P-DART: Bulletproofs-based Anonymous Regulated Transactions

Technical Specification

Polymesh Association

October 28, 2025

Contents

1 P-DART Math Documentation
1.1 Table of Contents s

2 Notation, Prerequisites and System Model

2.1 Notation o e
2.2 Prerequisites
2.2.1 Sigma protocol
2.2.2 Chaum-Pedersen Proof of Equality for Shared Witnesses
2.2.3 Elgamal and its variations oo
224 Curve Trees e e e
2.2.5 Bulletproofs
2.3 System modelo
2.3.1 Assets e e
2.3.2 Accounts and Settlements L.
2.3.3 Accumualtors
2.3.4 Asset-account mapping
2.4 Key registration
3 Account Registration
3.1 Account registration
3.1.1 Protocol e e

4 Asset Minting
4.1 Asset minting L.
4.1.1 Protocolo

5 Settlement

5.1 Settlement
5. 1.1 Leg . . . o e
5.1.2 Leg creation proof
6 Sender/Receiver Affirmations
6.1 Affirmations L
6.1.1 Protocol e
6.2 Fee e e
6.2.1 Account registration L L
6.2.2 Account tOp-Up e
6.2.3 Feepayment

13
13
13

17
17
17

20
20
20
21

DART Specification 2

7 Appendix 38
7.1 Appendix L e 38
7.1.1 Constraints for refreshing pand s. 38

7.1.2 Constraints for range proof o 0oL 38

DART Specification

Contents

DART Specification 4

1 P-DART Math Documentation

This documentation contains the mathematical description for the zero knowledge proof of
P-DART, implemented with Bulletproofs.

1.1 Table of Contents

1. Notation, Prerequisites and System Model
o Notation
Sigma protocols
ElGamal encryption variants
Curve Trees as accumulators
Bulletproofs
e System entities
2. Account Registration
e Account creation
e Zero-knowledge proof for registration
3. Asset Minting
e Issuer minting assets
o Account state transitions
4. Settlements
e Leg creation and encryption
e Settlement proof system
5. Sender/Receiver Affirmations
o Account state transition proofs
e Balance and counter updates
6. Fee System
e Fee account registration
e Fee account top-up
o Fee payment

Appendix

https://assets.polymesh.network/P-DART-v1.pdf
notation/index.html
notation/index.html#notation
notation/index.html#sigma-protocol
notation/index.html#elgamal-and-its-variations
notation/index.html#curve-trees
notation/index.html#bulletproofs
notation/index.html#system-model
account_registration/index.html
account_registration/index.html#account-registration
account_registration/index.html#protocol
asset_minting/index.html
asset_minting/index.html#asset-minting
asset_minting/index.html#protocol
settlements/index.html
settlements/index.html#leg
settlements/index.html#leg-creation-proof
affirmations/index.html
affirmations/index.html#affirmations
affirmations/index.html#protocol
fee_system/index.html
fee_system/index.html#account-registration
fee_system/index.html#account-top-up
fee_system/index.html#fee-payment
appendix/index.html

DART Specification 5

2 Notation, Prerequisites and System Model

2.1 Notation
We are working in 2-cycle elliptic curve groups G, and G, with orders p and ¢ respectively.
‘Gp‘ :p7‘6q‘ :q

The scalar field of G, is Z,, and its base field is Z,. Conversely, the scalar field of G, is Z, and
its base field is Z,,. Thus coordinates of points in G, are in Z, and coordinates of points in G,
arein Z_.

P

The following are the group generators (curve points):

G,G;,H,H;,J €C,

G.G,H,H eg,

The generators G; and CZ can be derived using a hash-to-curve method.

For a point P, the notations P.x and P.y refer to its z-coordinate and y-coordinate, respectively.

We use Pallas and Vesta as the curves. The group G, refers to the group of points on the
Pallas curve, and the group G, refers to the group of points on the Vesta curve. Thus G, G, are

generators of the Pallas curve and G’: @; are generators of the Vesta curve. But any 2 curves
with a 2-cycle can be used.

For any sequence S, S[i] represents the item at the i-th index. S[0] is the first item, S[1] is the
second item, and so on.

2.2 Prerequisites
2.2.1 Sigma protocol
For proving knowledge and equality of committed values in Pedersen commitments

Consider the following commitment to witnesses {wy, ..., w,, } and randomness r

C=rG+ iwi.Gi
=1

To prove knowledge of witnesses, following protocol is executed

Protocol 1. Prover selects random values r¢, w; p € Z,, and computes T" as:

T == TT'G + Z wi’T.Gi
i=1

2. The prover hashes C and T to get a challenge e € Z,, 3. Prover creates responses s =

{8,815y 8, } @S
8, =rpter, §=w,p+ew

4. Verifier checks the proof by checking the response (s,) relations in the exponent as

eC+T = 5,..G + Z s5;.G;

=1

DART Specification 6

2.2.2 Chaum-Pedersen Proof of Equality for Shared Witnesses

This protocol proves that a subset of k witnesses are shared between two generalized commit-
ments, Cy and Cp (w; = w) for i =1,..., k).

The Prover knows the following for C'y and Cpg

{rAa {w }z 1 {w k+1} for CA
{TB7{w i= 17{wz}z k+1} for Cg

where the witnesses {w, }¥_; and {w/}*_; are the same.

C’A—TAGA—i-Zw G, + Z w;.G,;

i=1 j=k+1

CB—TBGB+Zw G+ Z w].G,

i=1 l=k+1

Protocol 1. Prover picks common random w; 1 for the common witnesses w;. It selects other
randoms for the other components (14 7,75 1, w; 7, w] 7). It computes Ty and Tg:

TA—TATGA+ZwTG+Zw G;

i=1 Jj=k+1

TB—TBTGB+szTG/+ Z wy .Gy
1=k+1

2. The prover hashes Cy, Cpg, T}y, TB to get a challenge e € Z, 3. Prover computes the

common response set S,,mon = 15i 11 for the common Wltnesses and the unique responses

for the remaining witnesses.

Common responses
Si:wi,T‘i‘e.wi fOl“iZl,...,k‘

Remaining responses for C4:

SAr=Tarterys;=w;pr+ew; foruniquej=*~k+1,..,m

Remaining responses for C'p:

Spy="Tprtergs =w p+ew foruniquel="k+1,.,p

4. The Verifier accepts the proof if and only if both verification equations hold. The Verifier
must use the same submitted response s; for the common witnesses components in both
checks:

Verification for C'4:

eC’A+TA—sATGA+Zs G+ Z ;-G

Jj=k+1

Verification for Cp:

DART Specification 7

k p
e.Cg+Tpg < sp,Gp+ Zsi.G; + Z s1.G
=1 I=k+1

2.2.3 Elgamal and its variations

Elgamal For ElGamal on G, a message M € Gp is encrypted under a Public Key EK (= ek.G)
as ciphertext C' = (O, Cy) where C, Cy € G,. To encrypt, select random ephemeral key r € Z,,
and then

C=(C,,Cy) where C;=r.G and Cy=M+r.EK

To decrypt, using secret key ek, get M = C, — ek.C;. This variation is used to encrypt public
keys.

Exponent Elgamal For ElGamal on G,, a message m € Z,, is encrypted under a Public
Key EK(= ek.G) as ciphertext C' = (C},C,) where C;,C, € G,,. To encrypt, select random
ephemeral key r € Z,, and then

C=(C,,Cy) where C;=r.G and Cy=m.G+r.EK

To decrypt, using secret key ek, get m.G = Cy — ek.C;. Now solve for discrete log m in m.G
This variation is used to encrypt small values like account balance, transaction amount, asset
id, etc.

Twisted Elgamal This variant is more useful (efficient and guarantees) when the same message
is supposed to be encrypted for multiple public keys. Say the same message M € Gp is to be
encrypted for 2 public keys EK; and FK, with twisted Elgamal. To encrypt, select random
ephemeral key r € Z,, and then

C=(C,,CyCs) where C,=rEK,, Cy=r.EK, and C3=M+r.G

To decrypt, using secret key ek, get M = Cy — ek t.C,. To decrypt, using secret key ek,, get
M — 03 — €k51.02.

Note that ciphertext C' has 3 elements and not 4 like regular Elgamal. In general, with twisted
Elgamal for n parties, ciphertext has n 4+ 1 elements but each party works only 2 elements.
Twisted Elgamal applies to exponent Elgamal similarly.

2.2.4 Curve Trees

We use Curve Trees 1 as accumulator that support zero knowledge proofs of membership. Think
of them like merkle trees where the hash function is the non-hiding Pedersen commitment.
Conceptually, the tree is created as follows:

Assume its a binary tree. The leaf of the tree are always group element, elliptic curve points
in our case. Say P, P, are 2 leaves, then their parent node () is a non-hiding (no randomness)
commitment to x-coordinates of Py, P} as Q) = G * Py.x + G * P;.xz. Then to form the parent
of node R from () and its siblings, the same process is followed with X—coordirp/ates of () and its
siblings but this time the generators used are 50, G,as R = 50 * Qp.x + G * Q.xz. This is
because Py.z, P,.z and @ .x,Q;.z are in different groups and for this reason, we need a cycle
of curves. Because of the homomorphic property of the curve tree hash function (commitment),
updates to the curve tree are very efficient.

The curve tree membership proof contains nodes (commitments) on the path from root to the
leaf but these nodes are randomized, i.e. a blinding value is added to the commitment to make
it a hiding commitment. So in the above example, the proof for say leaf F; would contain nodes

https://eprint.iacr.org/2024/1647

DART Specification 8

[Py, Qp, --.] where Py = Py + G x4, Q) = Q + G 7, and so on where [Py, Qo ---] are the leaf
Py’s path from leaf (P,) to root.

In implementation, a public element A is added to a point before taking its x-coordinate and
the curve tree paper explains why then taking x-coodinate is sufficient. Also, we don’t use a
binary tree but much larger arity like 512, 1000 or 2000

2.2.5 Bulletproofs

We use Bulletproofs as a zk-SNARK and the curve tree membership proof is expressed using
R1CS circuit. We also express range proofs and some other relations as R1CS circuit. One of
the benefit of using Bulletproofs is that it allows Commit-and-Prove (CP) SNARKS meaning in
addition to the proof, we also get Pedersen commitments to the desired witnesses. This helps us
bridge (with the Pedersen commitment) Sigma protocols and zk-SNARK proof, meaning we can
ensure that certain Sigma protocol is executing over the same witness(es) as the zk-SNARK.

2.3 System model

The system has few kinds of entities: 1. Investors: These have accounts per asset and send
transactions to transfer assets from their accounts or receive assets in their accounts. Each
investor maintains two key pairs: an encryption key and an affirmation key. Both public keys
are elements of the Pallas curve GG, and are derived from their respective secret keys. We use
distinct generators G, and G 4 ;¢ from G,. - Encryption keys: secret key ek € Z,, and public
key EK = ek.Gg,. with EK € G, - Affirmation keys: secret key sk € Z, and public key
AK = sk.G o5 with AK € G,

For each investor, the chain also knows its identity /D where an I D can have any number of
encryption and affirmation keys associated to it. 2. Auditors: These parties are tied to specific
assets and they are supposed to be able to view all transactions for those assets. They only have
an encryption key as (ek, EK = ek.Gg,.). An asset may have 0 or more auditors. 3. Mediators:
These parties are also tied to specific assets and they are supposed to be able to view and accept
or reject all transactions for those assets. They have both encryption and affirmation keys. An
asset may have 0 or more mediators.

The encryption key is only used to decrypt the transactions while affimation keys are used to
act on transactions, like approving/disapproving deposit or withdraw. Note that all public keys
are in the Pallas curve.

2.3.1 Assets

Each asset has a unique numeric id and an asset can have 32 bits max and thus its maximum
value is 232 — 1. These are known in code as ASSET ID BITS and MAX ASSET ID.
Fach asset has an issuer which can mint that asset into its account and the chain tracks the asset
issuer by its public key. The maximum total supply any asset can have is 48 bits, i.e. 248 — 1.
These are known in code as BALANCE_BITS and MAX_ BALANCE. There are 2 types
of assets, ones which can be used to pay transaction fee and the rest which cant be used for
fee. Each asset can have 0 or more auditors or mediators. Each asset can optionally have 1
trustee whose public key is pky € G,,. This entity is responsible for helping with key recorvery,
clawback of funds, reversal of txns etc. An account while registering for an asset that has a
trustee has to encrypt certain information from his account for pk,. The trustee does need the
help of auditor/mediator to do these actions.

DART Specification 9

2.3.2 Accounts and Settlements

Contrary to many other anonymous cryptocurrencies, DART works on account model rather
than UTXO. This is because we want users to prove their exact account balance and not be
able hide any of it

Also, in DART assets can’t be transferred unilaterally as the receiver of the asset has to agree
to receive as well. An exception is portfolio move, where assets are moved between accounts
with the same identity.

Each investor can have only 1 account per asset id and it can be seen as a pair (pk, asset__id).

As accounts participate in transactions, their state changes. An account state is a Pedersen
commitment in the Pallas curve and the i-th account state is:

State; = skz.GAff—l—balance.Gl+counter.G2+asset7id.G3—|—p.G4+p”2.G5—|—52i.G6+id.G7, State; € G,

where sk - the secret key for their affirmation public key id - their identity 1D, to which all their
public keys are associated asset__id - id of the asset for which the account is balance - the current
account balance counter - This is number >= 0 and it can change during various transactions
p - This is the initial nullifier secret key created during registration. p*2? - This is the nullifier
secret key for this state and used when revealing the nullifier for this state. The rationale for
exponent i + 2 will be given in a later section. s - the randomness of the commitment. The
rationale for s2° will be given in a later section.

2.3.2.1 Account state transitions For updating account state from State; to State; ,
State; must be invalidated by revealing a nullifier N = p'"2.G5. The chain records N in a
set and does not allow to reveal the same nullifier twice, thus preventing multiple new state
transitions from the same old state. The new state will be:

State;, ; = sk:.GAff—i—balance/.Gl—i—counter/.G2—|—asset7id.G3—|—p.G4+p”3.G5—|—s2i+1.G6—|—id.G7,

Note that in the new state State, , fields sk,asset_id, p,id don’t change. For invalidating
state State, , (to transition to State,,,), nullifier will be p"™3.G5.

During state transition from State; to State, ,, State; must not be revealed as it allows tracking
the investor. State;,; however is revealed.

To allow for certain operations like key recovery, clawback of funds etc, the nullifier secret key
p' and randomness s are created for each state in a particular way. Each new account state
is supposed to have the exponent of p 1 more than the previous state’s exponent of p and the
randomness of new state is supposed to square of the randomness of previous state.

The starting state of an account is (balance and counter are 0 in initial state)

St(lteo = SkGAff —+ OGl + 0G2 + assetiid.Gig + pG4 + p2.G5 + S‘GG —+ ZdG7

Then the next state is

Statey = sk.G g5y + balance; .Gy + countery.G, +asset_id.Gs +p.Gy + p3.G5 + s2.Gg +id.G,

The next state

Statey = sk.G 45y + balancey. Gy + countery, .Gy + asset_id.Gg +p.Gy + pt.Gs + 51 .Gg +id.G,

The nullifier secret keys form these powers p?, p3, p%, ... and randomness forms these powers

5,52, 5% s% ... and anyone knowing rho or s can predict subsequent values. The reason for

State,; € G,

DART Specification 10

not constucting nullifier secret key p’ as p?, p*, p® is because p*.G5 is revealed which reduces
security if squares are used (TODO: Link paper and add details). During account registration,
i.e. creating State,, if asset has a trustee, then the value s is encrypted for pk, and published
on chain.

2.3.2.2 Settlements Asset transfers in DART are done through settlements. A settlement
is a transfer of 1 or more assets between 2 or more accounts. A settlement lifecyle for transfer
of a single asset from party (account) A to B is typically like this: 1. An entity creates a
settlement stating: transfer 10 units of asset-id at from A to B. 2. If party A agrees, it will
send an affirmation txn to the chain. This involves A to change its account state such that its
balance is decreased by 10 units, counter is increased by 1, and few other changes as well. A
proof that the state has been correctly updated is also sent to the chain. This step will nullify
(invalidate) the previous state of account A and set this new state as the current active state. 3.
If party B also agrees, it will also send an affirmation txn to the chain along its new state where
the counter is increased by 1, and some more changes and the proof that the state change is
correct. Similar to above, this step will nullify (invalidate) the previous state of account B and
set this new state as the current active state.

Note that the chain does not learn asset-id at or amount of 10 units or any details of accounts
A and B like their public keys, identity, counter, balance, etc. But the integrity of these are
enforced through zero-knowledge proofs.

Above example is just 1 variation of a settlement but settlements can be more involved. Also
detailed explanation of state changes and proofs follow in subsequent sections.

2.3.2.3 Fee account The above description of account states is for assets which are not
used in paying fee. For fee payment asset-ids, the account state is simpler as:

State; = sk.G 4¢¢ + balance.Gy + assel_id.G3 + p.G5 + .G, Stale; € G,

Reason for this simplicity will be given later.

The state is a Pedersen commitment in a cyclic group. Similar to above, the account state’s
witnesses don’t have counter and “age” components.

For updating account state from State; to State; ;, State; must be invalidated by revealing a
nullifier N = p.G5. Similar to above, the chain records N in a set and does not allow to reveal
the same nullifier twice. The new state will be:

State;,; = sk.G 44; + balance’ .G + asset_id.Gy + p’.G5 + s".Gg, State, € G,

Note that in the new state State; , fields sk, asset_id don’t change but new p’, s” are sampled
randomly.

2.3.3 Accumualtors

The system uses curve trees as accumulator and has 3 curve trees. 1. Asset curve tree: Each leaf
of this tree corresponds to an asset and stores the asset_ id and the public keys of its auditors
and mediators. When issuers register a new asset, a new leaf is added to this tree. When
they update existing asset, their leaf is updated accordingly. A leaf of the asset tree is a group
element in G, and thus a point on Vesta curve. It is Pedersen commitment to the “asset-id”
and x-coordinates of the public keys of auditors and mediators as:

Leafygser 1a= (AT.x).G+ (EK,.2).G) + (EKy.x).Gy + ... + (BK,.2).G,, Leaf,yss 1 € O,

DART Specification 11

Here - (AT'.x) refers to taking the x-coordinate of point AT = asset_id.J A€ G, - (FK;.x)
refers to taking the x-coordinate of public key FK, of the i-th auditor/mediator. The x-
coordinates are taken using the same approach as done by curve tree paper: adding a public
element A to EK; and taking the x-coordinate of the result 2. Fee account curve tree: Each
leaf of this tree corresponds to an account state for a fee paying asset. As fee payments are
done, existing states of those accounts are invalidated by revealing the nullifier (more on that
later) and new states are added. A leaf of this tree is an account state as:

Leaf; = sk.G 444 + balance.G + asset_id.Gy + p.G3 + .Gy, Leaf; € G,

This is an append only tree and leaves once added are never removed. And states of all fee paying
accounts regardless of the asset-id are captured in this tree. 3. Main account curve tree: Each
leaf of this tree corresponds to an account state for a non-fee paying asset. As corresponding
transcations are done, existing states of those accounts are invalidated by revealing the nullifier
(more on that later) and new states are added. A leaf of this tree is an account state as:

Leaf; = sk:.GAff—i-balance.Gl+counter.G2+asset7id.G3+p.G4+pi+2.G5+SQi.G6+id.G7, Leaf; € G,

This is also an append only tree and leaves once added are never removed. And states of all
non-fee paying accounts regardless of the asset-id are captured in this tree.

Reason for having 2 separate trees of different accounts is given later.

2.3.4 Asset-account mapping

The chain allows 1 public key to have only 1 account per asset-id. This is done by a Asset-
account registration step where the account’s public key and asset-id are revealed and the chain
keeps them in a mapping disallowing that public key to register for the same asset-id again.
This is to ensure that a public key can do an accurate proof-of-balance for that asset without
hiding any amount of that asset.

2.4 Key registration

This is the first step where all entities- investors, auditors, mediators, register their keys. This
is not registration for an asset but a proof of knowledge of secret key for the public key. A
simple implementation of this is a proof of knowledge of the discrete log in these 2 relations
which can be done with a folklore sigma protocol (Schnorr):

FK = ek.GEnC, AK = SkGAff

But since we allow users (think institutions) to onboard a large number of keys in a single txn,
we use the batch Schnorr protocol from Fig. 2 of 2 (Fig. 2 has a typo in the last equation
where g¥ should be ¢°) and implement the key registration as: 1. Prover (user) wants to list the
public keys [(EK,, AK,),(FK,, AK,),...(EFK,,AK,)] and has the corresponding secret keys
[(eky, skq), (eky, sksy), ..., (ek,,, sk,)] 2. Prover picks random:

Taff € Zp

https://iacr.org/archive/asiacrypt2004/33290273/33290273.pdf

DART Specification 12

3. Prover creates Tenc = TenC'GEnC7 Taff = Taff'GAff

4. Prover hashes [(EK,,AK,),(EK,, AK,),...(EK,,AK,)], T,., T,y to get a
challenge c € Z,,

5. Prover creates responses as:

n
Sene = Tenc + c 'eki
i=1

n
Sapf = Tags + ' shy
i=1

6. Verifier now checks:

Senc'GEnc ; Tenc + Z clEKz
i=1

? >
Sags-Gass = Top+) AK,
i=1

Similarly, multiple encryption keys of auditors/mediators can be registered in one key registra-
tion proof by following the protocol above and ignoring AK, and corresponding relations

DART Specification 13

3 Account Registration

3.1 Account registration

This process is used by an investor when it wants to start trading in an asset, i.e. be either a
sender or receiver of that asset. It can only be done once by any public key for a particular
asset and is done only for non-fee assets. The public key PK 4, must already be registered as
per the above protocol A successful completion of registration results in the following:

1. A state State, being inserted as a leaf in the accounts curve tree where
Statey = sk:.GAff—l—assetiid.G3+p.G4—|—p2.G5—|—5.G6+id.G7, balance and counter are 0 during registra

2. Pair asset-id, public key (asset_id, PK ;;(= sk.G 44;)) is added to the Asset-account
mapping

3. Nullifier N = p.G, is revealed by user and chain adds it to the nullifier set.

4. If asset has a trustee with public key pk, encryption of s for pk, is published on chain.

Account creation

1. User picks a nonce ¢, appends to the asset-id at to get the combined value at|lc. It
then passes it secret key sk and at||c to Poseidon2 hash to get the nullifier secret key
p = Poseidon2(sk, at||c). The nonce c is used in case user wants to re-register (account
recovery, etc), it can generate a new p

2. User picks a random:

s« 2,
3. It now creates its initial account state State, = sk.G 4y + asset_id.G5+ p.G4 + 2G5+
5.G6 + 'LdG7

3.1.1 Protocol
Here the prover (investor) wants to prove following relations:

1. Stateq = sk.G 455 + at.G3 + p.G, + p>.G5 + 5.G + id.G;. This is equivalent to proving
Stateq = AK + at.G5+ N + p*.G5 + 5.Gg +id.G, since N and public key AK is revealed
to the verifier.

N =p.G,

p = Poseidon2(sk, at||c)

p* = p.p

AK = sk.G ¢

If asset has associated pkr, then ciphertext C' correctly encrypts s. Since s € Z,, (be-
longs to scalar field of Pallas curve) and is large, 255-bit in our case, if its just en-
crypted in exponent-Elgamal, the descryption will be impractical since the decryptor
(pky) has to solve discrete log of a 255-bit value. Thus prover breaks it into small chunks
and encrypts each chunk using exponent-Elgamal encryption. These chunks are small
enough so that discrete log over them can be completeled in reasonable time (few min-
utes). CHUNK __BITS denotes the bit size of each chunk and NUM_CHUNKS de-
notes the total number of chunks. In our implementation, CHUNK_ BITS = 48 and
NUM CHUNKS = 6 since [%1 = 6 and this means 6 chunks are sufficent to encode
the 255-bit value Since Elgamal is homomorphic, these encryptions of chunks can be com-
bined together to get an encryption of the whole s which can then be used in a Sigma
protocol to show its equality with the s used in account state State,

oot W

DART Specification 14

Following describes the protocol assuming a pk; exists but its simple to avoid corrsponding
parts of the proof if asset does not have pk,

Instance: Statey, AK,at,c,N,id, C;,pkp,G a5, Ggpe, Gy H;

Witness: sk, p, s, s r

chunks; ' enc; *

Above are the high level instance and witness values known before the protocol starts and don’t
include instance and witness created during protocol execution like the various blindings and T’
values.

3.1.1.1 Prover

1. Prover first wants to prove knowledge of p?, s in the relation p2.G5 + s.G¢ = State, —
AK — at.G3 — N —id.G. This is just relation 1 from above rearranged where values on
RHS are public. Lets call these D as D = State, — AK — at.G5 — N —id.G; So prover
wants to prove knowledge of p?, s in p.G, + p®.G5 + 5.Gg = D and will do with a Sigma
protocol

. 2 o
2. Prover pleS random Pblinding> pblinding7 Sblinding S Zp and creates Tstate - pblinding'G4 +
2 —
Phtinding-Gs T Sviinding-Ge Tnun = P-G4

3. If pkp exists, break randomness s in NUM_CHU N K S chunks and encrypt each chunk us-
ing exponent Elgamal as: C; = (C, (,C, ;) = <Tenci'GEnc7Tenci .ka+sChunkSi.G), C; € 6127
is the base-20 HUNK_BITS yepresentation of s

€ Z,, is the randomness for the encryption.

where C} is ciphertext of i-th chunk, s.;,,%s
and it has NUM_CHUNKS digits and r

enc;

4. Note that Com, =}, 2CHUNK_BITS C;, = > Q#-CHUNK_BITS _ . o, Pkp+s-G Com, =
> 9i-CHUNK _ BITS C, =Y, 9i-CHUNK_BITS

“Tepe. * Gne and the scalar multiple of ka
in Com is same as the multlple of Gg,,. in Com and that multiple of G is s. Prover
uses Slgma protocol (Chaum Pedersen) to prove equality of both multiples: Pick random
Teombined € £, and reuse for s and create T, T

—combined — Tcombined'GEncv s—combined —
dka + Sblinding'G7 Where T T d & (Bp

r—combined’ - s—combine

isa CHUNK BITS-bit value else it
can create large values for s, which are valid base-2CHUNK_BITS yepresentation digits
but are so large that can’t be pfactically retrieved using discrete log solving algorithms.
For this the prover uses Bulletproofs and enforces range proof constraints for each sy,

enc;

Tcombine

5. The prover also needs to prove that each sgps,

6. For proving knowledge of 7. , Shunks. the prover inializes Sigma protocols, 2 for each
chunk. It first creates blindings and the commits to them as For i-th chunk, pick ran-
dom Tenc—blindingi’ Schunks—blinding € Z and create Tenc = Tenc—blindingi

Tencfblindingi 'ka + Schunksfblinding G Where Tenc 7Tchunksi S Gp

: GEnc) Tchunksi =

7. For proving p = Poseidon2(sk, at||c) and p? = p * p, prover uses Bulletproofs constraints
for Poseidon2 and a multiplication

8. Prover needs to prove that Bulletproofs constraints used in steps 5, and 7 do indeed
enforce on sk, Sopynps, s P> and, p?. Prover uses Sigma protocol (Chaum Pedersen) to prove
equality of committed values in Bulletproof’s commitment (corresponding to its witnesses)
and in Statey, and, C;. Let Cpp and C; be Bulletproof’s commitments to these values:

CBPp = bHO + Sk.Hl + pH2 + p2.H37 6 (Bp

DART Specification 15

10.

11.

12.

13.

14.

15.

Y
Cpp, = 0" Ho+Schunks,H1+5chunks, Hat - FSchunksyons ononrs 1 ANUM_cHUNKS: € §p

Here b,b” are blindings to the commitment added by Bulletproof.

. Prover proves knowledge of above committed values and equality of these with other

commitments as: Pick random rg P, € Z, and rgp € Z,, and create

_ 2
Tpp, = rpp,-Ho + skyiinding-H1 + Polinding M2 + Poiinding-Hsz» G,

Tp, = 7P, -Hot5chunks—blinding, H1F5chunks—blinding, ot F5chunks—blindingyyr; cnunis 1 ANUM_C1

And to prove knowledge of secret key in its affirmation key AK, it picks random sky;;,,ging
and creates T, = $kyinding-Gaff

Prover hashes the following to create challenge c as:

¢ = Hash(Statey, AK , at,c, N, id, Ci,ka,Coms,C’omr,C’Bpp,CBPS,T T T T

state’r L null> +r—combined’ + s—combine:

Prover now creates responses for each sigma protocol as: Respg;,1. = [pglmdmg + p?.c, Shlinding T S-C|

- - - i-CHUNK_BITS
Resppk - Skblinding+8k’c Respnull - pblinding +pC Respr - Tcombined+zi 2 o ’
Tenc, - ¢ Note that since prover already created response for witness s as Sy, 4ing + $.¢ in

Respg 40, it has both responses for Com,.

Creates responses for C;: Resp,; o = .c Resp,

enc—blinding; +Tenci = Schunksfblindingi +

chunks;

Schunks,-¢ Note that Resp; o is used as well for checking relation C; ,

For relations, Cp P, Cpp,_, only the responses for witnesses b,b" need to be created as the
responses of other witnesses are already created. Resp, =rp p, T b.c Respy =rpp + b .c

The proof is

(CBPP’ C’BPS) Tstate’ Tnulh T’r—combined7 Ts—combined7 Tenci ’ Tchunksi) TBPP) IJWBPS) Tpk7 Respstate’ R&S’ppk, Res

3.1.1.2 Verifier

1.

Verifier hashes the following to create challenge ¢ as:

T T T

tates Fnull) + r—combined> + s—combine

¢ = Hash(Statey, AK , at,c, N,id, C;, pkp, Com,, Com,, Cpp,, Cpp,: T,

. Enforces constraints in Bulletproof for Poseidon2 and a multiplication for p generation

and p? = p.p respectively

. Enforces constraints in Bulletproof for NUM_ CHUNKS range proofs, one for each

chunk.

. Verifies correctness of State, by checking: Resp,;q:e0]-G5 + Respyiare[l]-Ge L Tointe +

?
StateO‘c = (plz)linding + p2.C).G5 + (sblinding + S‘C)'GG = Tstate + StateO'C

. Verifies correctness of pk by checking: Resp,;.G 4y L Ty + AK.c = (8Kkpinding +

sk.c).G oy < T, +AK.c

. Verifies correctness of N by checking: Resp,,.;;-G4 < ThuntN.c = (Pprinding+r-¢)-Gy L

Tull+N'C

n

DART Specification 16

7.

10.

11.

12.

13.

14.

Verifier creates Com, and Com, as: Com, = }_. 2 CHUNK_BITS ¢;, Com, =
S i CHUNK_BITS | cr
i

51

. . ?
. Verifies correctness of Com, by checking: Resp,.G... = T,_.ombinea + Com,.c =

i-CHUNK_ BITS s
(Tcombined + Zz 2 - "Tenc, * C) ’ Genc =T, combined T COTT’LT - C

. Verifies correctness of Com, by checking: Resp,.pkp + Respyaiell]-G Z Ty combined T

— i-CHUNK_ BITS 2
CO’I’I’LS.C (Tcombined + Zl 2 - “Tenc; - C) ’ ka + (Sblinding t+ s C) -G =
Tsfcombined + Coms " C

. ?
Verifier checks response for C; o as: Resp; .G e = Tepe, + Cig.c = (1

?
Tenci‘c)‘GEnc = Tenci + Ci,O‘C

enc—blinding; +

Verifier checks response for C; ; as: Resp; o.pkp + Resp, .G < T, +C;q.c

hunks;

?
= (rencfblindingi + renci'c)'ka + (schunksfblindingi + Schunksi'c>'G = Tchunksi + C’i,l'c
Verifier checks response for CBPP as: Resp,.H, + Resp,,.H; + Resp,,;;-Hy +

ReSpstate[O]'HS ; TBPP + CBPP.C — (TBPP + b.C).HO + (Skblinding + Sk.C).Hl +

?
(Potinding + £-€)-Hy + (Piinaing + p°-¢)-Hy = Tpp + Cpp, .
Verifier checks response for Cgp as: Respy.Hy + Respschwkso.H1 + Respscmnkﬁ.H2 +
?

+ Resps 'HNUMCHUNKS = TBPS + CBPS'C — (TBPS +

chunks NUMoHUNKS-1
’
b 'c>'HO + (Schunks—blindingo + Schunkso)‘Hl + (Schunks—blinding1 + Schunksl)'HQ + .t

?
(SchunksfblindingNUMcHUNKS,l + SchunksNUMcHUNKS,l>~HNUMCHUNKS = TBPS + CBPS €
Verifier finally checks the Bulletproofs proof that verifies all constraints, i.e for Poseidon2,
multiplication and range proofs

DART Specification 17

4 Asset Minting

4.1 Asset minting

This process is done by an issuer who wants to mint some quantity of an asset that he created
into his own account. The asset-id is public and so is the minted amount. Issuer’s key AK and
it identity ¢d are also public. The chain ensures that the total minted amount can never exceed
MAX BALANCE and thus there is no range proof required on the balance in the new state.

A successful completion of minting results in the following: 1. The issuer’s old account state
State,;, is invalidated and new state State,,.,, is created. However, State,;; cannot be revealed
as it identifies which account state is being invalidated. So a randomized version of it State,;;
is used in relations. 2. Nullifier N = p,.G5 is revealed by issuer and chain adds it to the nullifier
set. Here p, refers to the nullifier secret key of State,;; 3. The balance in State,,,, is more than
balance in State,; by the minted amount 4. State,,,, is inserted as a new leaf in the curve
tree.

w

4.1.1 Protocol
Here the prover (issuer) wants to prove following relations when minting amount v:

1. State,y = sk.G 45¢ + baly.Gy + ent.Gy + at.G3 + p.G, + p'.G5 + 57.Gg + id.G,. This is
equivalent to proving State,; = AK +bal,.G| +cnt.Gy+at.G5+ p.Gy+ p' .Gy + s7.Gg +
td.G, since public key AK is revealed to the verifier.

2. Similarly State,,,,, = AK + bal,.Gy + cnt.Gy + at.G5 + p.G, + pitL.G5 + s%9.Gg +id.G .

Since bal, = v + baly, this is equivalent to State,,.,, —v.G; = AK + bal,.G; + cnt.G4y +

at.Gs + p.G, + pL.Gy + s%9.Gy + id.G,

State,;, exists in the accumulator (account curve tree)

N = p'.G;

AK = sk.G 5y

Pl = p.pt

520 = gl

bal, = baly + v

X NSO W

Instance: Stateoldr,Statenew,AK,at,N, vd,v, Path,., Root, GAff,Gi,Hi,C:’/,C:’;,ﬁ, ﬁl et

q
Witness: sk, baly, baly, cnt, p, pt, p™t, 87, %9 Path.

Above are the high level instance and witness values known before the protocol starts and don’t
include instance and witness created during protocol execution like the various blindings and T
values.

4.1.1.1 Prover

1. Prover first wants to prove knowledge of bal, ent, p, p?, s7 in the relation bal,.G; +cnt.Go+
p.G, + s7.Gg = State,; — AK — at.G5 — N — id.G,. This is just relation 1 from above
rearranged where values on RHS are public except State,;;. Now prover cannot reveal
State,; ;. Point 5 below explains how.

2. Similarly, taking relation 2 from above, prover wants to prove knowledge of
baly, c, p, ptt, 8% in baly.Gy + ent.Gy + p.Gy + p" .Gy + s*7.Gy = D where
D = State,,,,, — v.G; — AK —at.G5 —id.G.

3. Prover creates nullifier N = p".G;

4. Prover gets the path of the leaf State,,; as Path, an array of nodes (curve points), and
randomizes it, i.e all nodes in the path have a blinding added to them like b; x H;, or b, * H,,.

DART Specification 18

10.

11.

12.

. For enforcing, p

This will result in the leaf State,;; being transformed into State,;q = State,4+by.Hy and
Path transforms into Path,. Prover enforces the constraints for curve tree membership
using Path, Path,., b,

. Since prover knows the opening of State,; and b, it can prove the knowledge of opening

of State,, as well. So relation 1 can be transformed as
baly.Gy + cnt.Gy + p.Gy + p*.Gs + 87.Gg + by.Hy = State, g —AK —at.Gy — N —1id.G;

where the RHS is public. Now it starts proving the knowledge of these.

Prover picks random sky;.. .. .enty,. .. bal . . . s §2:d b
: b blinding> blinding> Ob“"dmg?pblmdmg?pzblmdmg7pz+1blmdmg’ blinding’ “blinding’ ¥ 0y,

Z,, and creates:
_ J
Tstate,,. = by, o Gt htinding GotPotinding GatPiyy, 1in 0G5 Sbtinding Go+00,,,, 40, H0s € Gy

_ 2.5
Tstate,.,, = balo,,,. .o, -C1H 0 binding GotPulinding GatPiv1,, 00, G5 Sblinding' Gor € Cp

new

Same blinding balob“ndmg is used for both old and new balance since the change in balance
is public and can thus be used in verification check accordingly.

For the correctness of nullifier and knowledge of secret key, prover creates T,,,;, =
G5, € G, Ty = Skyiinding Gags: € G,

piblinding.
L= p.pt, 527 = s7.s7, prover setups the constraints in Bulletproof as
both of these are just multiplications. Prover uses Sigma protocol (Chaum Pedersen) to
prove equality of committed values in Bulletproof’s commitment (corresponding to its

witnesses) and in State,,, and, State,,.,,. Let Cp P, be the commitment to these values:
CBPP’S =V .Hy+ p.H, + p".Hy + p"* 1 . Hy + s/ . H, + s*I.Hy, € G,

Here b’ is the blinding to the commitment added by Bulletproof.

. Prover proves knowledge of above committed values and equality of these with other

commitments as: Pick random rpp € Z,, and create
pys
— J 2.5
TBPP,S = TBPP,S'H0+pblinding'H1+piblmding'H2+pi+1blindmg‘H3+5blinding'H4+Sblinding‘H5’ € Gp

Prover hashes the following to create challenge c as:

¢ = Hash(State,, , State,,,, AK,at,N,id,v, Path,, Root, Cop, .+ Tstate,y, » Tstate, ., Tnuit» Tnp, T

Prover now creates responses for sigma protocol for Respye .
otdy

ReSpstateozdr = [balob”ndmg +baly.c, cntynging T CNE-C, Pylinding T P-Cs + s

piblmding + pi-C, Sjblinding

Responses for sigma protocol for Respg, e

new

Respstate = [J" L4 pi+1bzmdmg + Pi+1-C 52-jbzmdmg + 82.]».6]

The symbol 1 indicates that no response is created for that witness since a response has
been created for the same witness above. Because responses for bal,, cnt and p are already
created in Respyape . -

DART Specification 19

13.

14.

15.

The response for nullifier secret key p’ is already created in Respgiate,,, - Response for
witness sk Resp,, = SKpinding + Sk-¢

For relation C'z P, only the response for witnesses b’ needs to be created as the responses
of other witnesses are already created in Respgyq. and Respgqe . Respy =1p P, T
b .c

The proof is

(C’BP'p,S ’ Sta’tealdr? Statenew’ Path'r? TStateoldT ’ TStatenew ’ Tnulh YjBPp,S ’ Tpk7 Respstateoldr) Respstatenewﬂ RBS]

4.1.1.2 Verifier

1.

= (balob“ndmg+balo.c).G1+(cntblmdmg+cnt.c).G2+(pblmdmg+p.c).G4+(
5.

. Verifier enforces the Bulletproof constraints for the 2 multiplications: p

Verifier hashes the following to create challenge c¢ as:

¢ = Hash(Statey, , State,,.,,, AK, at, N, id,v, Path,, Root,Cgp Tstate,q » Tstate,,.,» Tnuit TP, T

%

= p.p’ and
527 = g7.87.

. Verifier enforces the Bulletproof constraints for curve tree membership to verify that Path,,

leads to Root.

. Verifies correctness of State,, by checking:

Respstateoldr [O] 'G1+R€Spstateoldr [1] 'G2+Respstateoldr [2] 'G4+Respstateoldr [3] 'G5+Respstateoldr [4] 'G6+Re“

+04-6)- G5+ (Shiimaing +57-€)-

plblinding

Verifies correctness of State by checking:

?
Respstateoldr [0] 'G1+R€Spstateoldr [1] 'G2+Respstateol,ir [2] ‘G4+Respstatenew [3] 'G5+Respstatenew [4} 'GG = TS

2.5
= (baly,,, . +baly.c).Gi+(cntyinging+cnt-¢).Got(Pprinding+0-€)-Gat(Pisa,,,, . FHPir1-0)-GsH (i,

Note that for the balj, cnt, and p witnesses, verifier reuses responses from Resp e = -
old,

. Verifies correctness of nullifier by checking:

RespstateoldT [3].G5 < T,.u+N.c
= (piyyann, + P0Gy = Ty + Noc
Verifies knowledge of secret key by checking;:
Resp,;,-G azy < T, +AK.c

— (Skblinding + Sk'.C).GAff ; Tpk + AKC

. Verifier checks response for Czp as:
p,s

Respb’ 'HO+ReSpstateoldr [2] 'Hl +Respstateoldr [3] ‘H2+Respstatenew [3] ‘HS +R€Spstatealdr [4] 'H4+R€Spstatenc,

= (TBPPVS +b/-C)-Ho‘f‘(Pblmdmg‘FP-C)-Hl‘*‘(Piblmdmg +P¢-C)-H2+(Pi+1b,mdmg +Pi+1'C)'H3+(3ilmdmg+3j'c)

. Verifier finally checks the Bulletproofs proof for all constraints i.e. curve tree membership

and multiplications

DART Specification 20

5 Settlement

5.1 Settlement

A settlement can have 1 or more Legs as each Leg represents one asset transfer. Say Alice
wants to send 10 units of asset id at to Bob, then such a settlement will have 1 leg with Alice
as sender and Bob as receiver. If Alice wants to swap asset 10 units of at with Bob for 20
units of at’, then such a settlement will have 2 legs with Alice acting as sender in one leg and
recevier in other and vice-versa for Bob Settlements might be created by sender, receiver or a
third party. To keep the amount, and identities of parties confidential, the settlement creator
encrypts these details including asset-id so that the chain does not even learn which asset is
being traded. However, the chain knows how many legs the settlement has. The encryption is
done for all parties to that leg which include sender, receiver and all auditors and mediators for
that asset. An assumption here is that the verifier does not need to ensure that the encryption
is correctly done for the sender, receiver or mediator since they need to respond to a settlement
for it to succeed so if the decryption can’t be done, it will eventually fail. This isn’t true for
auditors and they just need to observe and can’t influence the settlement anyway. Following
describes the creation of a leg, its encryption, decryption and the proof that the leg is correctly
generated.

5.1.1 Leg
A leg has:
1. AK, = sk,.G 444 - Affirmation key of sender
2. AK, = sk,.G 4¢¢ - Affirmation key of receiver
3. EK, = ek,.Gp,,. - Encryption key of sender
4. EK, = ek,.Gp,,. - Encryption key of receiver
5. at - asset-id being transferred
6. v - Amount of units being transferred
7. keys - A list of keys of asset’s auditors and mediators along with their role specified such

that keys, = (role, EK;) where EK,; = sk;.Gp,,. is the key of the i-th auditor/mediator

5.1.1.1 Encryption The setllement creator wants to ensure that the same leg encyption is
given to all parties and thus uses twisted Elgamal.

1. Since 4 items need to be encrypted, picks ry,ry, 73,74 € Z,, and creates: CT, =r,.Gpg, .+
AK, CT,. =ry.Gyg,.+AK, CT, =r3.Gg,. +v.H CT,, =1, Gpg,.+at.H

2. Above can be used by the sender/reciver to decrypt but they also need to prove (during
affirmations) that CT,(or CT,) has AK (or AK,) and they know its secret key. To make
it efficient, the creator picks r; such that both sender and receiver can recover them. It
does that using Diffie-Hellman as: Pick a random y € Z, and create a shared secret
ss = y.G g, Use hash-to-field to get (ry,7qy,75,74) = h2f(ss) Now create Eph, = y.EK
and Eph, =y.EFK,

3. Now sender (or receiver) can recover ss as ss = ek, L.Eph, (or ss = ek, 1.Eph,) and then
(ry,79,73,74) = h2f(ss)

4. For each keys,;, create Ephy, = [r|.EK;,15.EK;, r3.EK;,r,.FK}]

The leg encryption is

(CT,,CT,,CT,,CT,, Eph,, Eph,., [Ephy, , Ephy, , ...])

5.1.1.2 Decryption If a sender/receiver knows which leg corresponds to his key (from off-
chain communication), it first recovers r; as described above. 1. Then it decrypts CTy,CT.

DART Specification 21

to get its and ensure that its the correct key AK, = CT, —r,.Gp,. AK, = CT,, —ry.Gp,. 2
To decrypt amount and asset-id, does the Elgamal decryption followed by solving discrete log
vH =CT,—r;.Gg,. at.H =CT,, —r,.Gg,.

Since v and at are small, 48 and 32 bits respectively, they can be recovered in reasonable
ammount of time solving discrete log.

if the sender/receiver didn’t know which legs corresponds to him, then he has to scan the chain
and repeat step 1 for each leg to check if its the sender or receiver. Note that the sender/receiver’s
affirmation secret key is not needed to decrypt so they can delegate the descryption task to
another service without that service being able to spend their assets but it can only track them.

For auditors/mediators, who dont have r, but only their key, they proceed by taking inverse of
secret key as sk~! and:

AK = CT, — sk™".Ephy, [0] = —11.Ggne
AK, =CT, — sk’l.Ephk [1] = —79.G e
vH=CT,— .Sk:’l.Eph/,C [2] C —73.G e
at.H=CT,, — sk:’l.Ephk (3] = CT —74.GEne

W

v and at are recovered by solving discrete log.

5.1.2 Leg creation proof

The proof for leg creation needs to hide: - The sender and reciever’s identity (or public key)
- The amount being transferred - The asset being transacted. This is the most complicated
part as the it needs to prove that all the transaction details are being encrypted for the asset’s
auditors and mediators without revealing the asset or identity of auditors and mediators.

Recall from the “System model” model section that an asset’s data, i.e. its id and public keys
of all its auditors and mediators are stored in a leaf of the asset curve tree. It is Pedersen
commitment to the “asset-id” and x-coordinates of the public keys of auditors and mediators
as

Leaf,ser iq = (AT.2).G + (EK,.2).G) + (EKy.2).Gy + ...+ (BK,.2).G,, Leaf,yes 14 € G,

But there is a slight difference in the implementation where we include the role of the FK,; as
well so the leaf actually looks like this

Leaf, ser iqa = (AT.:U).54-((7“0[61.J—l—EKl).x).(?l—i—((roleQ.J—i—EKQ).:1:).@-ﬁ-...—{—((rolen.J—i-EKn).:c

Here - (AT.z) refers to taking the x-coordinate of point AT = asset_id.J, A € G, - (role;.J +
EK,.z) refers to taking the x-coordinate of role;.J + EK, where role; and EK, are role and
public key of the i-th auditor/mediator. If role is auditor, role; = 1 else 0. The x-coordinates
are taken using the same approach as done by curve tree paper: adding a public element A to
EK, and taking the x-coordinate of the result

Now this pushes Leaf, .. ;4 in a different group G, (Vesta curve) whereas all public keys are
in G, (Pallas curve). We use a similar technique used by Curve tree paper. The key idea is that
the asset-id and encryption keys for all auditors and mediators is committed in a single Pedersen
commitment where the x-coordinate of the item “represents” the item and then we randomize
each item and can treat as a group element which can be revealed. Since the asset_id € Z,,
we shift it to G, by multiplying it by a public J € G,,. Following describes the general protocol

DART Specification 22

Pedersen Commitment to Curve Points Commits to elliptic curve points by committing
to their x-coordinate the same way curve trees do. Then the knowledge of those committed
points can be proven along with generating a re-randomized version of each point. Given points
P, €G, as

A:[PO’P17""PH]

Commit to A in a Pedersen commitment of x-coordinate of each P, i.e.

P,.x € C = PedCom(Py.z, P,.x,...,P,.x) = Z

G,;*P;.x
where C' € G, and P,.x € Z, where G,,G, are on 2 curves which form a 2-cycle (base field of
one equals scalar field of other).

1. Prover randomizes each P; to get

where

2. Prover proves Vi, P; € G, i.e. P,.xz, P,.y are x and y coordinates of a point which lies in
group G, and P,.x, P,y € Z,.
3. Prover proves Vi, A, [i] = A[i] +bl,« B= P, +bl,* B

The implementation adds a public element A to each P, as mentioned in the curve tree paper.

In our usage of the above protocol, A corresponds to [AT,role;.J + EK;,role,.J +
EK,,..,role,.J + EK,)|

A prover (settlement creator) wants to prove following relations when creating a leg with amount
v:

1. CT,,CT,, correctly encrypt the amount and asset-id

2. Ephy, = [r.EK;,r5.EK;,r5.EK;,r,.EK;] where EK, is the key of the i-th auditor and
mediator. This also involves a curve tree membership proof as the creator needs to prove
that the asset-id its proving about is a valid one (in the tree).

3. v<= MAXgALANCE

Instance: CT,, CT,,, Path,., Root, Gy, ., G,, H, H,, J, G, G,, H, H, € G

a q

Witness: v,at,r, 19,735,714, EK;, Path.
Above are the high level instance and witness values known before the protocol starts and don’t

include instance and witness created during protocol execution like the various blindings and T'
values.

DART Specification 23

5.1.2.1 Prover

1. Prover creates list of points for asset-id and keys as A = [AT,role,.J + EK;,role,.J +
EK,,..,role,.J + EK,)]

2. Create blindings blindings = [bl,, bl;, bl,, ...bl,] and randomize Aas A, = [AT,,E,, E,, ..., E,]
where AT, = AT + bly.Hy = at.J + bl,.H, and E; = role;.J + EK,; + bl,.H,. A, will be
shared with the verifier since all its items are randomized.

3. Take coordinates of all points in A as = [(AT + A).z, (E; + A).z, (Ey+ A).x, ..., (B, +
A).z] and y = [(AT + A).y, (By + A)y, (Ey + A)y, ..., (B, + A).y]

4. Enforces constraints that for each i:

o (z;,y;) is a valid curve point

o (z;,9;) +bl;.Hy = (v, ,y,,) + A where (z, ,y,) = A.[i]. The RHS is completely public
but the LHS involves a fixed point (H,) scalar multiplication - bl,.H, and a curve point
addition - (z;,y;) + bl,.H,.

5. Now that there is a public E; corresponding to each public key EK, as E; = role;.J +
EK, +bl;.H,, we can state EK; in terms of E; as I, — role;.J — bl;.H, = E'K; since the
LHS is a “blinded version” of EK; and is different for the same EK; in different proofs
(as long as fresh bl; is chosen). Now use it for proving relations about Eph;, as

Ephy, = [ry.(E;—role;,.J—bl,.Hy),ry.(E,—ro0le;.J—bl,.H),r5.(E;,—role,.J—bl;,.Hy),r,.(E,—role,.J—bl,.H

which is doable using folklore techniques as all group elements, E;, H, J are public. Infact,
role;.J is public since role; is public.

6. Now prover has to use Sigma protocol for 2 witnesses for each item of Eph,, which is
expensive so we express

o Ephy [0] in the 2 witness relation as Ephy, [0] = ry.(E; —role;.J) +11.bl;.(—H,)
« Ephy [1] = (TQ.Tfl).Ephki [0] since 71" Ephy, [0] = E; —role;.J —bl;. Hy = EK;
o Similarly Ephy [2] = (r3.r7").Ephy, [0] and

o Ephy,[3] = (ryrit).Ephy, [0]

7. Another trick is that prover doesn’t need to prove that the scalars ro.ryt rq.ryt, 7y
are well formed in the sigma protocols. It can enforce that in Bulletproof using multi-
plication relations like r,.ry.r7! = 7, and so on. In the sigma protocol, prover treats
rory iyt r oyt as a, 8, 7.

8. For proving AT, = at.J + bly.H, prover picks random atyging, blo,,, .. € Z, and
creates: Tay = alyjinging-J +0lo,,, . .Hy, € G,

9. For the unified Bulletproof commitment, prover creates:

1

Cpp=0.Hy+r.H) +19.Hy+r3.Hy+r,H +a.Hy+ 3.Hg+7v.H;, +v.Hy, Cpp€G,

where a = o7, B =rgryt vy =17l
10. Bulletproof constraints enforce:
o TLA=Ty
e ri.f=ry
* T Y =Ty
o V<= MAXzALANCE (range proof)
11. For each auditor/mediator 4, prover proves Ephy [0] = ri.(E; — role;.J) + r1.bl;.(—Hy).
Prover picks random rlb”ndmg,bl € Z, and creates: TEphki [0]
role;.J) + bl; (—H,),€ G,

lblinding

, = (B, —
Zblinding lblinding g

12. For Ephki[l], prover picks random n4in, € Z, and creates: Tepn, 1] =
Qptinding-EPhy [0], € G,

13. For Ephy, [2], prover picks random By, 4ing € Z,, and creates: T,y 2] = Byiinding- £y, [0, €
@ K2

p

DART Specification 24

14

15.

16.

17.

18.
19.
20.
21.
22.

23.

24.
25.

For Eph, [3], prover picks random Yy;;qing € £, and creates: T, (3] = Ypiinding-EPh, (0], €
G k2
p

For the Bulletproof commitment, prover picks random rpp € Z,, and creates:
Tgp = TBP‘HO+r1blinding‘H1+r2blmdmg‘H2+r3bli7Ldi7Lg‘H3+T4blz‘ndmg'H4+ablmdi”9'H5+’6blindiﬂg'H6+7blind7

For proving CT, = r3.Gg,. +v.H and CT,, = r,.Gp,. + at.H, prover picks ran-
dom T3 imaing? Ublindings Ty ainy Wolinding € Z,, and creates: T, = T3bzmdmg'GEnC +
Ublinding'H7 € Gp Tat = r4blmdmg‘GEnc + atblinding'H7 € Gp

Prover hashes the following to create challenge c as:

¢ = Hash(A,, Leaf,

asset_id,»

Path,., Root, CT,,CT,;,Cpp, Tar TEphki [0]> TEphki [1]> TEphki [2] TEphki 3]s 1

Prover creates responses for Respap @ Respar, = [atplinging T at-c; blg, . 4 bly.c]
+ry.c, bl +71.bl;.c]

For each 4, prover creates responses for Respg,p,. 102 Respgpn, (0] = [iptinding

rlblinding
For Ephki [1], prover creates response: RespEphk_[l] = Qinding + Q-C

For Ephy,, [2], prover creates response: Respppn, 121 = Briinding + B-¢

For Ephy,, [3], prover creates response: Resppyn, 13) = Yotinding + 7-C

For CT,, prover creates responses: Resp, = +73.C, Vplinding T V-C] Resp,, =
[r4blinding +74-C J‘]

For relation C'zp, prover creates response for blinding b: Respgp = [rgp +b.c, L,
The proof is

(CBPv Ar? Leafa

I:rgblinding

+ry.c, L,

r
2bl2‘nding

sset_id,.»

Pathm CTva CTat? TATT’ TEphki [0]» TEphki 1 TEphki 2] TEphki [3]» TBP» Tm Tatv R€Sp1

5.1.2.2 Verifier

1.

Verifier hashes the following to create challenge ¢ as:

¢ = Hash(A,, Leaf

asset_id,>

Path,., Root, CT,,CT,, Cgp, TATTa TEphki [0] TEphki (1] TEphki [2]» TEphki (3] Ty

Verifier enforces the Bulletproof constraints for curve point validity: for each i, (z;,v;)
satisfies the curve equation.

. Verifier enforces the Bulletproof constraints for randomization consistency: (z;,v;) +

bl; Hy = (2, ,y,) + A for all 4.

Verifier enforces the Bulletproof constraints for curve tree membership to verify that Path,,
leads to Root.

Verifier enforces the Bulletproof constraints for the multiplication relations:

L4 7“1.0(27“2
o Tl‘IBZTS
¢ Ty =Ty

. Verifier enforces the Bulletproof constraint for range proof: v <= MAXzALANCE.

Verifies correctness of AT, by checking: Respar [0].J + Respp [1].H, < Typ + AT,.c
?
— (atblindmg + at.C).J + <bl0blinding + blO.C).HO = TATT + ATT.C

. For each 1, verifies correctness of Eph, [0] by checking:

?
RespEphki 0] [0].(E; —role;.J) + .]%3espEphlch [o]m-(_Ho) = TEphki 0] + Ephy, [0].c

= (r +7r.¢).(E; —role;.J)+ (bl +7,.bl;.c).(—H,) ~ Tepn, 10+ Ephy [0].

lblinding Zblinding

DART Specification 25

9. For each i, verifies correctness of Eph,, [1] by checking: Respg,,, [1)-Ephy, [0] < Tepn, 1)t
?
Ephy [1].c = (inding + @-¢)-Ephy, [0] = TEphkl,[l] + Ephy, [1].c

10. For each 4, verifies correctness of Ephy, [2] by checking: Respg,y,, [o-Ephy, (0] < Tepn, 2+
?
Ephy, [2l.c = (Byiinding + B-¢)-Ephy, [0] = TEphki 2] T Ephy, [2].c

2

11. For each 4, verifies correctness of Ephy, [3] by checking: Respg,, 13- Ephy, [0] = Tgpp, (51t
?
Ephy, [Bl.c = (Votinding + 7-6)'Ephki [0] = TEphki[3] + Ephy, [3].c

12. Verifier checks response for Czp as:

Respgpl0] .Ho—i—RespEphki (0] [0].Hy+Respgpl2].Hy+Resp,[0]. Hy+ Resp ;0] .H4—|—RespEphki n)-Hs+Respg,

= (rgp+b.c).Hy+(o) Hy+(+ry.¢). Hy+(+r5.c). Hy+(+ry.c).Hy+

r r r r
1blindin 2blinding 3blinding 4blinding

13. Verifies correctness of CT,, by checking: Resp,[0].G g, + Resp,[1].H < T,+CT,c =
?
+ T3'C)'GEnc + (vblinding + U'C)'H - Tv + CTU'C

(r?’blinding
14. Verifies correctness of CT,, by checking: Resp,,[0].Gg,. + Respy[1].H < T, +CT,.c
= (mbmdmg +74.6).G e + (atyinging + at.c).H L T,+CT,.c
15. Verifier finally checks the Bulletproofs proof for all constraints i.e. curve point validity,

randomization consistency, curve tree membership, multiplication relations, and range
proof

DART Specification 26

6 Sender/Receiver Affirmations

6.1 Affirmations

Once has settlment has been posted on chain, sender/receiver send their agreement along with
a proof which proves that they are the party to that leg and they have done a correct account
state transition, invalidating previous state by submitting the nullifier and their revealing their
new state. Note that they don’t point to their old state in the accumulator.

For an account state to transition from State,; to State,.,,, - secret key sk, identity ¢d and
asset-id at should not change - nullifer should be revealed as p'.Gj - nullifier secret key p® and
randomness s/ should change as: p**!

Old state

= p.pt, 827 = g7.s

State ;g = sk‘.GAff+balance.G1+counter.02+at.G3—I—p.G4—|—pi.G5—|—87.G6+z’d.G7 State,;q € G,

New state

State,,.,, = sk.G o p+balance’ .G +counter’.Gy+at.G3+p.Gy+p"™.G5+5%1.Gg+id .G, State,,,, € G,

balance might or might not be same as balance’ depending on who is affirming or what kind
of transaction it is. counter’ might be 1 more or 1 less than counter depending on the kind of
transaction. Also, it must be proved that the State,,; has same asset-id at that is in the leg
and has the public key for the same secret key as in the account.

For a single leg settlement of amount v 1. When a sender affirms a leg, its new account state’s
balance should be v less than the old account’s and its counter should increase by 1. 2. When
a receiver affirms a leg, its new account state’s balance should be same as the old account’s
and its counter should increase by 1. 3. Sender can revert its affirmation by creating a new
account state which has the balance increased by v and counter decreased by 1. 4. Receiver can
revert its affirmation by creating a new account state with counter decreased by 1. 5. Once a
settlement has been confirmed, i.e. it cant be reverted, - sender can send a counter update txn
to decrease its counter by 1 - receiver can send a claim funds txn to increases its balance by v
and decrease its counter by 1.

Table describing changes to balance and counter for various txns.
sender and receiver respectively.

s and . refer to txn sent by

Transaction Balance Counter
Type Description Change Change
Affirm_ s Sender affirms a leg of amount v -V +1
Affirm_r Receiver affirms a leg 0 +1
Claim_r Receiver claims funds after settlement +v -1
CntUpd_s Sender updates counter after settlement O -1
Reverse_ s Sender reverses their affirmation +v -1
Reverse_r Receiver reverses their affirmation 0 -1

6.1.1 Protocol

This section describes a unified account state transition proof which can handle all the above
scenarios and parts of this proof can be omitted when balance doesn’t change Here the prover
(sender /receiver) wants to prove following relations when sending affirmation for leg with amount
v:

DART Specification 27

State, q = sk.G 555 + baly.Gy + cnty.Gy + at.Gs + p.G, + p' .Gy + s7.Gg + id.G;,
Similarly State,,.,, = sk.G 4 ¢ +bal;.G; +enty.Gyt+at.Gy+p.Gy+p .Gy +529.Gg+id .G,
State,;, exists in the accumulator (account curve tree)

N = p'.Gy

Pt = p.pt

520 = gl

ootk W

If balance change is expected,
e bal, = baly — v (for Affirm__s)
o bal, = baly, + v (for Claim__r or Reverse__s)
8. Counter change:
o cnty = cnty + 1 (Affirm__s, Affirm_ r)
e cnt; = cnty — 1 (Claim_r, CntUpd_ s, Reverse_s, Reverse_r)
9. Since the change to counter is public, relation for State,,,, can be expressd as:
o State, o, —Gy = sk.G o pp+bal;.Gy+cnt.Gy+at.Gy+p.Gy+p" .Gy +529.Gg+id G,
if counter increased by 1.
o State,.,+Gy = k.G pp+bal,.G)+cnt.Gy+at.G3+p.Gy+p .G+ 527 .G +id .G
if counter decreased by 1.
10. bal; <= MAXRALANCE to avoid overflows
11. Prove that asset id in C'T, is at
12. If transition involves a balance change, prove that amount in CT, is v
13. Prove that sk is the secret key of public key in:
o (T, if they are sender
o CT, if they are receiver

Instance: State,, , State Gapp Gy, H, H, G,

G, H, H eg,

N, Path,., Root, CT,, CT,, CT,, CT,

new> at?

Witness: sk, at,id,v,baly, baly,cnt, p, pt, p*t, 87, 523 Path.

Above are the high level instance and witness values known before the protocol starts and don’t
include instance and witness created during protocol execution like the various blindings and T
values.

6.1.1.1 Prover

1. Prover first wants to prove knowledge of sk,at,baly,cnt,p,p’,s’,id in the relation
State, g = sk.G z5; + baly.Gy + cnty.Gy + at.Gs + p.Gy + p'.G5 + 57.Gg + id.G;

2. Similarly, prover wants to prove knowledge of sk, at,baly, cnt, p, p**t, s%7 id in State,,,,,
from relation 10.

o If counter increased by 1: State,.,, — Gy = sk.G 4¢; + baly.Gy + cnty.Gy + at.G3 +
p.G4 =+ pi+1.G5 + 32'j.G6 + ZdG7
o If counter decreased by 1: State,,,,

+ GQ = SkGAff + ball.Gl + Cnto.GQ + at.G3 -+
p.Gy+ p .Gy + $29.Gg + id.Gy

3. Prover gets the path of the leaf State,,; as Path, an array of nodes (curve points), and
randomizes it by adding blindings to all nodes. This will result in the leaf State,;; being
transformed into State,,; = State, 4+ by.H, and Path transforms into Path,. Prover
enforces the constraints for curve tree membership using Path, Path,.,b,.

4. Since prover knows the opening of State,;; and b, it can prove the knowledge of opening
of State,y as well. So relation 1 can be transformed as:

SkGAff + balo.Gl + Cnto.GQ + at.G3 + pG4 + plG5 + Sj.Gﬁ + ’LdG7 + bO'HO = St@teoldr

DART Specification 28

. j 2
5. Prover picks random sk, gings @brinding: baloblindmg, yinding Polinding Piviinaing’ PitLotinding’ Sblinding> Sb

Zp and creates:

= J
Tstate,,. = SFotinding Gagrtbaly, . Gitcntyinaing Gotatyinging GatPuiinding GatPiy,, 40n, G550

6. For the new state, create:

TState

ew = SKbiinding Gapptbaly, - Gi+entyinding Gotatyinding GatPlinding Gat i1y, 4, G5t
Same blindings for sk, at, cnt, p,id are used in both old and new state since these values

don’t change. If balance doesn’t change, also use same blinding so balobl_ dine = ballbl_ tin®
inding inding

7. For the correctness of nullifier, prover creates:

T

null — plblmdmg'

G;, €0,

8. For enforcing p'™! = p.p’ and s27 = s7.s7, prover sets up the constraints in Bulletproof as

both are multiplications. Prover uses Sigma protocol (Chaum Pedersen) to prove equality
of committed values in Bulletproof’s commitment and in the state commitments. Let
CBPP . be the commitment:

CBPp,s = b/.HO + le + p’LH2 —+ pi+1,H3 -+ Sj.H4 + 82"j.H5, c Gp

9. If the balance changes, prover sets up constraint in Bulletproof based on transaction type:

o If balance change is —v: bal; = baly — v
o If balance change is +v: bal; = baly + v

Let CBPbal be the commitment:
CBPbal = b”'HO + U'Hl + balO-HQ + ball.H37 € GP

10. Prover creates commitment for Cp P, by picking random rg P € Z,:

_ j 2.5
Tpp = BP, Ho+puiinding-H1 T Pitinding H, F it imding 'H3+Sblinding'H4+8blinding‘H57 €G,

pys

11. Prover creates commitment for Czp by picking random vy,q4ing: "Bp,,, € Zp:
TBPbal = TBPbaL 'HO + vblinding’Hl + balobzmding'HQ + ballblmdmg'H3’ € GP

12. For proving at in CT,,, picks random T dyimaing © Z, and creates: T,, = r4b“nqu.GEm +
atyiinding-H 13. For proving the correctness of public key in leg, picks random rpkz,”;dmg €z,
and creates: T = Tpkmmdmg'GEnc + Skpiinding-Gays if sender 14. If balance changes, picks
random T3 pimaing € Lo and creates: T, = G Ene T Vplinding-H 15. Prover hashes the

rgblindin
following to create challenge c¢ as: ’

c= Hash(Stateoldr, State N, Path,., Root,CT,,CT,,CT,,CT,,, CBPp CBp,., Tstate,,, + Tstate,..s Tnuus

new?r new’

16. Prover creates responses for Respqse . -
o r

Respgiate,,, = [SKblinding + sk-c, baly, .+ baly.c, cnlyinging + cto-C, alyinging + A1-C; Phiinding + P-C

17. Prover creates responses for Respg,.. . If balance changes, create response for bal,,
new
otherwise mark as L:

_ 2. 2.5
Respgiate, = [L, ballblmdmg +bal,.cor L, L1, L, 1, Pit1ypinaing T Pit1:C Stiinding + 57, 4, 1]

DART Specification 29

18. Response for nullifier:

Resppu + pi-c

- pzblinding

19. For relation C’Bpp _» only the response for blinding b" needs to be created: Resp, =

TBPPy

_+b'.c Resp, = Upjinging + v-¢ 20. For relation Cgp,,,» only the response for blinding b”

and amount v needs to be created: Respy» = rgp, + b”.c 21. Response for asset-id in leg:

Resp, = Tdyrimaing T T4:C 22. Response for public key in leg: Resp,, =
balance changes, response for amount in leg: Resp,.,

(CBPP,S s CBPbal s StateoldT, Stat@

rpk:bli’ndi’n,g + Tpk-C 23. If
+ r3.c 18. The proof is

=T
3blinding

Pathr? N? TStateoldT) TState Tnull? TBPP’S) TBPbal) T, 1, k> Tm Respstateold

new? new’ at’» - p
#+H44 Verifier
1. Verifier knows the transaction type txn,ype which determines counter direction and bal-

. Verifies correctness of State

ance change expectations.

. Verifier hashes the following to create challenge c as:

new?

¢ = Hash(State,, ,State,.,,, N, Path,, Root, txnype, Crp, . CBp,. Tstate,, + Tstate

aTnullv TBPP,Sv -

new

3. Verifier enforces the Bulletproof constraints for the 2 multiplications: p*t = p.p!
and 527 = 5.7,

. Verifier enforces the Bulletproof constraint for the balance change based on txn,ype:

o If ten,ype € {Af firm}: baly = baly —v
o If tan,ype € {Claim,, Reverseg}: bal, = baly + v

. Verifier enforces the Bulletproof constraints for curve tree membership to verify that Path,.

leads to Root.

. Verifies correctness of State,, by checking:

Respstateoldr [0] 'GAff_’—ReSpstateoldr [1] ‘Gl +Respstateoldr [2] 'G2+Respstateoldr [3] 'GS—'_ReSpstateoldr [4] G4+}

> (skblindin9+8k.c>.GAff‘f'(balOb”nding+balo.c).G1+(Cntblinding+cnt0.C).G2+(atblinding+at.c).G3+(pbl
by checking:

new
o If counter increased by 1:

Respstate [0] 'GAff+Respstate [1] ‘Gl +RespstateoldT {2] 'G2+Respstateoldr [3] 'G3+R€Spstateoldr [4] g

old,

new

o If counter decreased by 1:

Respstateoldr [0] 'GAff+Respstatenew [1] ‘Gl +RespstateoldT [2] 'G2+Respstateoldr [3] 'G3+Respstateoldr [4] g

If balance doesn’t change, Resp,qqe, [1] is L and verifier uses Respyq , [1] for both
old and new balance responses.

== (Skbzmdmg+5k-0)-GAff+(bal1b“ndmg+bal1'C>-G1+(C”tblmdmg+cnto-c)~G2+(atbzmdmg+at'0>'G3+(szmdmg

8.

Verifies correctness of nullifier by checking: Resp,,,;;-G’ = Tun+Nc = (
p;-c).Gs T

n

plbzmdmg

wll +NC

. Verifier checks response for Czp as:
p,s

Respb’ 'H0+R€Spstateo,dr [4] 'Hl +R€Spstateoldr [5] ‘H2+Respstate [5] ‘H3+Respstateoldr [6] 'H4+Respstatene,

new

= (TBPP,S+b/‘C)‘HO‘F(szmdmg*'P‘C)~H1+(Piblmdmg+P¢'C>'H2+(Pi+1blmdmg+ﬂi+1'C)'H3+(5izmdmg+5j-c)

DART Specification 30

10. Verifier checks response for Cpp —as: Respy.Hy + Resp,.H; + Respygqe,,, [1.Hy +
?
mw[l].H?) = Tgp,,, + Cpp,,,-c = (rpp,, + b".c).Hy + (Vpinging + v-¢)-Hy +
?
(balob”ndmg + baly.c).Hy + (ballblinding +baly.c).Hy =Tgp +Cpp, .C

Respstate

11. Verifier checks response for CT,, by checking: Resp, .G g, + Respyqe,,, [3]-H < T, +

?
CTat‘C = (+ T4'C)‘GEnc + (atblinding + CLt.C).H = Tat + CTat'C

T
4blinding

?

12. Verifier checks response for public key in leg by checking: Resp,;.G g, +Respgate , [01.G 4zy

?

Tpp + CTy.c (if sender) = (rpp,,. 4 74-C).Gpne + (Skpiinding + $k-¢).Gasy
Tpk + CTS.C

Resppk'GEnc + Respstateoldr [O] 'GAff ; Tpk + CT’I"C (lf receiver) = (+ Tpk'c>'GEnc +

rpkbl' di
maing
?
(Skblinding + Sk'c)-GAff = Tpk + CTS.C
13. If balance changes, verifier checks response for amount in leg by checking: Resst.G Ene+

?
Resp,.H =T,+ CT,.c
?
— (T3blinding + T3.C).GEnC + (Ublinding + U.C).H = T’U + CT,U.C

14. Verifier finally checks the Bulletproofs proof for all constraints i.e. curve tree membership,
multiplications, and balance change

DART Specification 31

6.2 Fee

Fee accounts are different from regualar accounts and their states are tracked in a different
curve tree. Fee accounts also transition from one state to another, invalidating old state by
revealing the nullifier. Fee can be paid in designated assets and these are different from non-fee
paying assets. These assets don’t have auditors or mediators. Fee accounts support minting and
spend. During both the amount minted or spent is public but the balance of new state is kept
private. Also, for fee payment asset-id is always revealed. Nullifier secret key p and commitment
randomness s are not generated deterministically but chosen randomly. They don’t have an id
or counter. Following shows a state transition in fee account.

State, g = sk.G 455 + balance.Gy + at.G3 + p.G5 + .G, State,y € G,

State,,,, = sk.G 45 + balance’ .Gy + at.G3 + p".G5 + 8'.Gg, State,,,, € G,

6.2.1 Account registration

A user can register fee account with a non-zero balance. The asset-id, balance and public key
are public during registration. A successful completion of registration results in the following;:

1. A state State, being inserted as a leaf in the accounts curve tree where
Statey = sk.G 5 ¢¢ + balance.Gy + at.G5 + p.G5 + 5.Gg
2. Pair asset-id, public key (asset_id, PK 4;;(= sk.G 4;;)) is added to the Asset-account
mapping
6.2.1.1 Protocol Here the prover (investor) wants to prove following relations:

1. Statey = sk.G 5¢s + balance.G; + at.G5 + p.G5 + s.Gg. This is equivalent to proving
Statey — AK — balance.G| — at.G5 = p.G5 + 5.Gg4 since AK, balance, at are revealed to
the verifier.

6.2.1.1.1 Prover

1. Prover wants to prove knowledge of p,s in the relation p.G5 + 5s.G4 = Statey, — AK —
balance.G| — at.G5 where the RHS is public.

2. Similarly, prover wants to prove knowledge of sk in AK = sk.G 4.

3. Prover picks random:

$
Skblinding7 pblinding? Sblinding — Zp

and creates:

Tstate = pblinding'G5 + Sblinding'GES? € Gp

4. For proving knowledge of secret key, prover creates: T, = skyinging-Gafssr € G,
5. Prover hashes the following to create challenge c as: ¢ = Hash(State,, AK,balance, at,T.

6. Prover creates responses for Resp ;.-

Respstate = [pblinding + p-c, Sblinding + S.C]

state?

DART Specification 32

7. Response for secret key: Resp, = skpjinding + sk-C
8. The proof is
(Statey, AK , balance, at, Ty 10, Tpr, ReSDspates RESPyL)
6.2.1.1.2 Verifier
1. Verifier hashes the following to create challenge c as: ¢ = Hash(State,, AK, balance, at,T.

2. Verifies correctness of State, by checking:

Respi01010).Gs + Respgiare[1].Ge ~ T iute + (Stateg — AK — balance.G, — at.G3).c

= (Pplinding T P-¢)-G5 + (Spiinding + 5-¢)-Gg L T iate + (Stateyg — AK — balance.G| — at.Gy).c

3. Verifies knowledge of secret key by checking: Resp,;.G 455 < T+ AK.c = (skyingingt
Sk.C).GAff ; Tpk + AKC

6.2.2 Account top-up

This is similar to regular account’s minting txn where the balance in State,,,, is increased by

a public amount v and the public key sk.G 4, is revealed as well.

w

A successful completion of top-up txn results in the following:

1. The user’s old account state State,, is invalidated and new state State,,,, is created.
However, State,;; cannot be revealed as it identifies which account state is being invali-
dated. So a randomized version of it State,, is used in relations.

2. Nullifier N = p.G5 is revealed by issuer and chain adds it to the nullifier set. Here p refers
to the nullifier secret key of State,;,

3. The balance in State,,,, is more than balance in State,;; by the minted amount

4. State,.,, is inserted as a new leaf in the curve tree.

6.2.2.1 Protocol Here the prover (user) wants to prove following relations when minting
amount v:

1. Stateyq = sk.G 55 + baly.Gy + at.G5 + p.G5 + s9.Gg. This is equivalent to proving
State,; = AK + baly.G| + at.G5 + p.G5 + s7.G since public key AK is revealed to the
verifier. Since bal, + v = bal;, this is equivalent to State,; + v.G; = AK + bal,.G| +
at.Gy + p.G5 + s7.Gg

2. Similarly State,,,, = AK + bal,.G; + at.G5 + p’.G5 + s".Gg.
3. State,;, exists in the accumulator (account curve tree)

4. N = p.Gj

5. AK = sk.G 54y

6.

bal, = baly +v
7. baly <= MAX,EEZALANCE

Instance: State,, ,State AK,at, N,v, Path,, Root,G ¢, G;, H,

new?’

Witness: sk, baly,baly,p,p’,s,s’, Path.

Above are the high level instance and witness values known before the protocol starts and don’t
include instance and witness created during protocol execution like the various blindings and T
values.

state’

T

p

k)

DART Specification 33

6.2.2.1.1 Prover

1. Prover wants to prove knowledge of bal,,p,s in the relation bal,.G; + p.G5 + s.G4 =
State, g +v.Gy — AK — at.Gj.

2. Similarly, prover wants to prove knowledge of baly,p’,s" in bal,.G; + p'.G5 + s".G4 =
State,,.,, — AK — at.G5 where the RHS is public.

3. Prover gets the path of the leaf State,,; as Path, an array of nodes (curve points), and
randomizes it by adding blindings to all nodes. This will result in the leaf State,; being
transformed into State,, = Statey, + by.Hy and Path transforms into Path,. Prover
enforces the constraints for curve tree membership using Path, Path,.,b;.

4. Since prover knows the opening of State,;; and b, it can prove the knowledge of opening
of State,, as well. So relation 1 can be transformed as:

baly .Gy + p.G5 + 5.Gg + by.Hy = Stateyy +v.Gy — AK — at.Gg

where the RHS is public.

5. Prover picks random

$
/ ’
Skyiinding bal1b,mdmg, Pblinding® Pblinding> Sblinding> Sblinding’ bo,,,mdmg — 7,

and creates:

TStateoldr = ballb“ndmg'Gl + pblinding'G5 + sblinding'GG + bobzmdmg'Ho’ € Gp

6. For the new state, create
_ ’ ’
TStatenew = bal1b“ndmg-G1 + pblindz’ng'GE) + Sblmding‘G67 € Gp

Same blinding ballb“ndmg is used for both old and new state as the equation of State,;
has been adjusted to keep balance witness same.

7. For the correctness of nullifier and knowledge of secret key, prover creates: T, ,;, =
pblinding'G57 S Gp Tpk = Skblinding'GAff7 € Gp

8. For enforcing bal, <= MAXp,EEZ;ALANCE, prover sets up constraints in Bulletproof.
Let Cpp, , be the commitment:

CBPbal = b/‘HO + ball.Hl, 6 Gp

9. Prover creates commitment for Cpp by picking random rgp € Z,;:

TBPbal = TBszz 'HO + ballbzmdmg'Hl’ € Gp

10. Prover hashes the following to create challenge c as:

¢ = Hash(State,, ,State AK,at,N,v, Path,, Root,Cgp, ,Tsiate,,, > Lstate, ..+ 1,

nulls T, k> TBPbal)

new? new p

11. Prover creates responses for Resp,;,ie s
otdy

Respstateoldr = [ballblmdmg + ball'c’ Prvlinding +p.c, Sblinding +s.c, boblinding + bO'C]

DART Specification 34

11. Prover creates responses for Respg e -
new

Respstatencw = [J‘7 pélinding + IO/'C’ S/blinding + S/'C]
The symbol L indicates that no response is created for bal; since a response has been
created for the same witness in Respgqe . -
12. Response for nullifier: Resp,,,;; = Puiinding + P-C

13. Response for secret key: Resp,, = skyinaing + sk-C

14. For relation Cgp , only the response for blinding b needs to be created: Resp, =
TBPbal + b,.C

15. The proof is
(Cgp,,,» Stateyy , State

new?

Pathw N7 TStateoldT ’ TStatenew ’ Tnull7 Tpk:7 TBPbal ’ Respstateoldr ’ Respstatenew7 F

6.2.2.1.2 Verifier
1. Verifier hashes the following to create challenge c as:

¢ = Hash(State,, , State AK,at,N,v, Path,, Root,Cgp, Tsiate . > Lstate, .. s Tnuts Tors Tep,,,)

new’ p

2. Verifier enforces the Bulletproof constraint for the balance change: bal, <=
MAXpEEgALANCE. (Constraints in the appendix)

2. Verifier enforces the Bulletproof constraints for curve tree membership to verify that Path,,
leads to Root. (Constraints in the appendix)

3. Verifies correctness of State,, by checking:

?
Respstateoldr [O] 'G1+R€Spstateoldr [1] 'G5+Respstateoldr [2] 'G6+Respstateoldr [3] 'HO = TStateoldT +<Stateoldr+

?
= (baly,,, . +baly.c).Gy+(PoiindingTP-C)-GsF(SpiindingT5-¢)-Ge+(+by.c).Hy = TStateoldr—i_(Stateol

Oblinding

5. Verifies correctness of State,,.,, by checking:

Respstateoldu [0] 'G1+R€Spstatenew [1] ‘G5+R65pstatenew [2] ‘Gﬁ ; TStatenew +(Statenew_AK_at‘G3)‘c

/ / / / ?
= (ballb“ndmg—l—ball.c).Gl—l—(pblmdmg—{—p €).G5+(ShrindingT5'-¢)-Go = Tspare, . +(State, ., —AK—at.Gy).c

Note that for the bal; component, verifier reuses the response from Resp,,. . as indicated
by L in Respgqte

new

6. Verifies correctness of nullifier by checking: Resp,,,;;-G's < Tt + N-¢ = (Poiinding +
p.c).Gs < T,uu+N.c

7. Verifies knowledge of secret key by checking: Resp,,.G 455 < Tpt+AK.c = (skyinging T
Sk.C).GAff ; Tpk + AKC

8. Verifier checks response for Cgp as: Respy.Hy+ Respyae.,, [0].Hy L Tsp,,,+Csp,,C

?
— <TBPbal + b/.C).HO + (ballblinding + ball.c).Hl = TBPbal + CBPbal.c

9. Verifier finally checks the Bulletproofs proof for all constraints i.e. curve tree membership
and balance change

DART Specification 35

6.2.3 Fee payment

To pay of amount v, the old account state is transitioned to a new one whose balance is v less
than the previous one. The user must always reveal the asset-id for fee.

A successful completion of fee payment results in the following:

1.

The user’s old account state State,; is invalidated and new state State,,,, is created.
However, State,,; cannot be revealed as it identifies which account state is being invali-
dated. So a randomized version of it State, is used in relations.

. Nullifier N = p.Gj is revealed by issuer and chain adds it to the nullifier set. Here p refers

to the nullifier secret key of State,,

. The balance in State,,,,, is less than balance in State,;; by the fee amount
. State,,,, is inserted as a new leaf in the curve tree.

6.2.3.1 Protocol Here the prover (user) wants to prove following relations when minting

amount v:

1.

Instance: State,, ,State

SO N

State,;; = sk.G 4;p + baly.Gy + at.G3 + p.G5 + s7.Gg. Since baly — v = baly, this is
equivalent to State,; +v.Gy = sk.G o5y + baly .Gy + at.Gg + p.G5 + s7.Gg

Similarly State,,.,, = sk.G o¢; + baly.Gy + at.Gy + p'.G5 + s".G.

State,;, exists in the accumulator (account curve tree)

N = p.Gy

bal, = baly —v

bal, <= MAX ,EELALANCE

at, N, v, Pathr, .ROOt7 GAff’ Gi’ Hz

new?’

Witness: sk, baly, baly, p,p’,s,s’, Path.

Above are the high level instance and witness values known before the protocol starts and don’t
include instance and witness created during protocol execution like the various blindings and T'
values.

6.2.3.1.1 Prover

1.

Prover wants to prove knowledge of sk,bal;, p, s in the relation bal,.G| + p.G5 + 5.G¢ =
Statey gy +v.Gy —at.Gy — sk.G 445

. Similarly, prover wants to prove knowledge of sk, baly,p’,s" in bal;.G| + p'.G5 + s".Gg =

State,,.,, — at.G3 — sk.G 4y where the RHS is public.

. Prover gets the path of the leaf State,,; as Path, an array of nodes (curve points), and

randomizes it by adding blindings to all nodes. This will result in the leaf State,;; being
transformed into State,,; = State,q + by.H, and Path transforms into Path,. Prover
enforces the constraints for curve tree membership using Path, Path,.,b,.

. Since prover knows the opening of State,; and b, it can prove the knowledge of opening

of State, as well. So relation 1 can be transformed as:
$k.G gp5 +baly.Gy + p.Gs + 5.Gg + by.Hy = Stateyy +v.Gy —at.Gg

where the RHS is public.

. Prover picks random:

/7 /
Skyinding ballb”ndmgv Pblinding> Pblinding> Sblinding> Sblinding’ bob”ndmg ~ 7,

DART Specification 36

10.

11.

12.
13.

14.

and creates:

Tstate,y,, = SKptinding G agptbaly,, . .Gi+Pyiinding G5+ 5ptinding Go100,,,, 4., 05 € Gy

. For the new state, create:

_ / /
Tstate,,,, = SFlindingGapp T baly,, . Gi+ Dyinding' G5 + StiindingGer» € Gp

Same blindings for sk, bal; are used in both old and new state since these values don’t
change.

For the correctness of nullifier, prover creates: T,,.,;; = Pyiinding-Gs» € G,

. For enforcing bal, <= MAXpFEgALANCE, prover sets up constraints in Bulletproof.

Let Cpp, . be the commitment: Cpp = b".H, + bal,.H,, € G,

. Prover creates commitment for Czp =~ by picking random rgp € 2,0 Tgp

TBPba,l .HO + bal:Ll;lv,"ncli'n_(,'.13-17 6 Gp

Prover hashes the following to create challenge c as:

¢ = Hash(Statey, , State,.,,at,N,v, Path,, Root,Cgp . Tsiase s Tsiate

Tnull’ TBPML)

new? new’

11. Prover creates responses for Respg;, e s
otdy

Respstateold = [Skblinding + sk.c, ballblinding + baly.c, Polinding T P-C; Splinding T $-C; boblinding

Prover creates responses for Respg e -

_ / / / /
Respstatenew - [J-7 J—v pblindz‘ng + p -C, Sblindz’ng + s .C]

The symbol L indicates that no response is created for sk, bal; since responses have been
created for the same witnesses in Respgqqe ,, -

Response for nullifier: Resp,,,i; = Pyiinding + P-C

For relation Cgp , only the response for blinding b" needs to be created: Resp, =
Tgp,, tb'.c

The proof is

(CBPbal s StateoldT, St(lte PathT,]\77 TStateold,. s TState

new? new’ TnU”’ TBPbaL) Respstateoldr) Respstatenew’ Resp,

6.2.3.1.2 Verifier

1.

2.

3.

4.

Verifier hashes the following to create challenge c¢ as:

¢ = Hash(State,, , State at, N,v, Path,., Root,Cgp, . Tsare .. s Tstate, .. s Tnurs Tep,,,)

new?

Verifier enforces the Bulletproof constraint for the balance range: bal, <= MAX,EEzALANCE.
(Constraints in the appendix)

Verifier enforces the Bulletproof constraints for curve tree membership to verify that Path,,

leads to Root. (Constraints in the appendix)

Verifies correctness of State,,; by checking:

?
Respstateoldr [0] 'GAff_’—ReSpstateoldr [1] ‘Gl +R65pstateoldr [3] 'G5+R€Spstateoldr [4] 'G6+R€Spstateoldr [5] 'HO =

DART Specification 37

== (Skblinding+8k'c)'GAff+(bal1b”ndmg+ball'C)'G1+(pblinding+p'c)'G5+(8blinding+8'c)'G6+(+by.c).

Oblinding

5. Verifies correctness of State by checking:

new

?
Respstateoldr [0] 'GAff_’—ReSpstateoldT [1] ‘Gl +R68pstatenew [3] 'G5+Respstatenew [4] 'G6 = TStatensw +(Sta’teneu

’ ’ ’ ’ ?
- <Skblinding+8k'c)'GAff+(bal1blinding+bal1'C)'G1+(pblinding+p 'C)'G5+(Sblinding+8 'C>‘G6 = TStatenew—’_(S-‘

Note that for the sk, bal, components, verifier reuses responses from ResPstateDZd,, as indicated
by L in Respyq. . 6. Verifies correctness of nullifier by checking: ResPsiate,,, [3].G5 Z
Ty + N.c = (Poiinding + p-¢)-G5 < Tyuny + N.c 7. Verifier checks response for Cpp
as: Respy Hy + Respgiage,,, [1].H, < Tgp,,, +Cpp,,,-c = (rpp,, TV.c).Hy+ (baly, . "+

bal,.c).H, 7 Bp,,, T Cpp,,,-¢ 8. Verifier finally checks the Bulletproofs proof for all constraints
i.e. curve tree membership and balance range

DART Specification 38

7 Appendix

7.1 Appendix
7.1.1 Constraints for refreshing p and s

Once p, p;; ;11,55 541 are committed in Bulletproof, we get circuit variables for each one of
them. Then we enforce multiplication relations among these variables.

These variables are guaranteed to have these values
var_rho = \rho

var_rho_i = \rho_i

var_rho_i_plus_1 = \rho_{i+1}

var_s_i = s_i

var_s_i_plus_1 = s_{i+1}

// Assign circuit variable var_rho_i_plus_1_ to the product of var_rho and var_rho_i
var_rho_i_plus_1_ <- var_rho * var_rho_i

// Assign circuit variable var_s_i_plus_1_ to the product of var_s_i and var_s_i
var_s_i_plus_1_ <- var_s_i * var_s_i

// Enforce that values of var_rho_i_plus_1 and var_s_i_plus_1_ are same
var_rho_i_plus_1 == var_s_i_plus_1_

// Enforce that values of var_s_i_plus_1 and var_s_i_plus_1_ are same
var_s_i_plus_1 == var_s_i_plus_1_

7.1.2 Constraints for range proof

To prove that a value v is of n bits, i.e. v € [0,2" —1), decompose v into bits and prove that each
bit is indeed a bit, i.e. 0 or 1 and the appopriate linear combination of the bits is the original
value v.

// bits is an array bits of v in little-endian representation.
bits = decompose(v)
// This will be set to different powers of 2 during execution of the loop
m=1
for bit in bits {
// Allocate circuit varaibles a and b and assign them values 1-bit and bit
a <- 1 - bit
b <- bit

// Enforce a * b = 0, so one of (a,b) is zero
a *x b ==

// Enforce that a = 1 - b, so they both are 1 or O.
a+ (b-1) ==

// Add “-bit*27i> to the linear combination
v = v - bit * m;

DART Specification

39

// Enforce v = 0
V==

	P-DART Math Documentation
	Table of Contents

	Notation, Prerequisites and System Model
	Notation
	Prerequisites
	Sigma protocol
	Chaum-Pedersen Proof of Equality for Shared Witnesses
	Elgamal and its variations
	Curve Trees
	Bulletproofs

	System model
	Assets
	Accounts and Settlements
	Accumualtors
	Asset-account mapping

	Key registration

	Account Registration
	Account registration
	Protocol

	Asset Minting
	Asset minting
	Protocol

	Settlement
	Settlement
	Leg
	Leg creation proof

	Sender/Receiver Affirmations
	Affirmations
	Protocol

	Fee
	Account registration
	Account top-up
	Fee payment

	Appendix
	Appendix
	Constraints for refreshing \rho and s
	Constraints for range proof

