
P-DART: Bulletproofs-based Anonymous Regulated Transactions
Technical Specification

Polymesh Association

October 28, 2025

Contents
1 P-DART Math Documentation 4

1.1 Table of Contents . 4

2 Notation, Prerequisites and System Model 5
2.1 Notation . 5
2.2 Prerequisites . 5

2.2.1 Sigma protocol . 5
2.2.2 Chaum-Pedersen Proof of Equality for Shared Witnesses 6
2.2.3 Elgamal and its variations . 7
2.2.4 Curve Trees . 7
2.2.5 Bulletproofs . 8

2.3 System model . 8
2.3.1 Assets . 8
2.3.2 Accounts and Settlements . 9
2.3.3 Accumualtors . 10
2.3.4 Asset-account mapping . 11

2.4 Key registration . 11

3 Account Registration 13
3.1 Account registration . 13

3.1.1 Protocol . 13

4 Asset Minting 17
4.1 Asset minting . 17

4.1.1 Protocol . 17

5 Settlement 20
5.1 Settlement . 20

5.1.1 Leg . 20
5.1.2 Leg creation proof . 21

6 Sender/Receiver Affirmations 26
6.1 Affirmations . 26

6.1.1 Protocol . 26
6.2 Fee . 31

6.2.1 Account registration . 31
6.2.2 Account top-up . 32
6.2.3 Fee payment . 35

1

DART Specification 2

7 Appendix 38
7.1 Appendix . 38

7.1.1 Constraints for refreshing 𝜌 and 𝑠 . 38
7.1.2 Constraints for range proof . 38

DART Specification 3

Contents

DART Specification 4

1 P-DART Math Documentation
This documentation contains the mathematical description for the zero knowledge proof of
P-DART, implemented with Bulletproofs.

1.1 Table of Contents
1. Notation, Prerequisites and System Model

• Notation
• Sigma protocols
• ElGamal encryption variants
• Curve Trees as accumulators
• Bulletproofs
• System entities

2. Account Registration
• Account creation
• Zero-knowledge proof for registration

3. Asset Minting
• Issuer minting assets
• Account state transitions

4. Settlements
• Leg creation and encryption
• Settlement proof system

5. Sender/Receiver Affirmations
• Account state transition proofs
• Balance and counter updates

6. Fee System
• Fee account registration
• Fee account top-up
• Fee payment

Appendix

https://assets.polymesh.network/P-DART-v1.pdf
notation/index.html
notation/index.html#notation
notation/index.html#sigma-protocol
notation/index.html#elgamal-and-its-variations
notation/index.html#curve-trees
notation/index.html#bulletproofs
notation/index.html#system-model
account_registration/index.html
account_registration/index.html#account-registration
account_registration/index.html#protocol
asset_minting/index.html
asset_minting/index.html#asset-minting
asset_minting/index.html#protocol
settlements/index.html
settlements/index.html#leg
settlements/index.html#leg-creation-proof
affirmations/index.html
affirmations/index.html#affirmations
affirmations/index.html#protocol
fee_system/index.html
fee_system/index.html#account-registration
fee_system/index.html#account-top-up
fee_system/index.html#fee-payment
appendix/index.html

DART Specification 5

2 Notation, Prerequisites and System Model
2.1 Notation
We are working in 2-cycle elliptic curve groups 𝔾𝑝 and 𝔾𝑞 with orders 𝑝 and 𝑞 respectively.

|𝔾𝑝| = 𝑝, |𝔾𝑞| = 𝑞
The scalar field of 𝔾𝑝 is ℤ𝑝 and its base field is ℤ𝑞. Conversely, the scalar field of 𝔾𝑞 is ℤ𝑞 and
its base field is ℤ𝑝. Thus coordinates of points in 𝔾𝑝 are in ℤ𝑞 and coordinates of points in 𝔾𝑞
are in ℤ𝑝.

The following are the group generators (curve points):

𝐺, 𝐺𝑖, 𝐻, 𝐻𝑖, 𝐽 ∈ 𝔾𝑝

𝐺, 𝐺𝑖, 𝐻, 𝐻𝑖 ∈ 𝔾𝑞

The generators 𝐺𝑖 and 𝐺𝑖 can be derived using a hash-to-curve method.

For a point 𝑃 , the notations 𝑃 .𝑥 and 𝑃 .𝑦 refer to its 𝑥-coordinate and 𝑦-coordinate, respectively.

We use Pallas and Vesta as the curves. The group 𝔾𝑝 refers to the group of points on the
Pallas curve, and the group 𝔾𝑞 refers to the group of points on the Vesta curve. Thus 𝐺, 𝐺𝑖 are
generators of the Pallas curve and 𝐺, 𝐺𝑖 are generators of the Vesta curve. But any 2 curves
with a 2-cycle can be used.

For any sequence 𝑆, 𝑆[𝑖] represents the item at the 𝑖-th index. 𝑆[0] is the first item, 𝑆[1] is the
second item, and so on.

2.2 Prerequisites
2.2.1 Sigma protocol

For proving knowledge and equality of committed values in Pedersen commitments

Consider the following commitment to witnesses {𝑤1, ..., 𝑤𝑛} and randomness 𝑟

𝐶 = 𝑟.𝐺 +
𝑛

∑
𝑖=1

𝑤𝑖.𝐺𝑖

To prove knowledge of witnesses, following protocol is executed

Protocol 1. Prover selects random values 𝑟𝑇 , 𝑤𝑖,𝑇 ∈ ℤ𝑝 and computes 𝑇 as:

𝑇 = 𝑟𝑇 .𝐺 +
𝑛

∑
𝑖=1

𝑤𝑖,𝑇 .𝐺𝑖

2. The prover hashes 𝐶 and 𝑇 to get a challenge 𝑒 ∈ ℤ𝑝 3. Prover creates responses 𝑠 =
{𝑠𝑟, 𝑠1, ..., 𝑠𝑛} as

𝑠𝑟 = 𝑟𝑇 + 𝑒.𝑟, 𝑠𝑖 = 𝑤𝑖,𝑇 + 𝑒.𝑤𝑖

4. Verifier checks the proof by checking the response (𝑠𝑖) relations in the exponent as

𝑒.𝐶 + 𝑇 ?= 𝑠𝑟.𝐺 +
𝑛

∑
𝑖=1

𝑠𝑖.𝐺𝑖

DART Specification 6

2.2.2 Chaum-Pedersen Proof of Equality for Shared Witnesses

This protocol proves that a subset of 𝑘 witnesses are shared between two generalized commit-
ments, 𝐶𝐴 and 𝐶𝐵 (𝑤𝑖 = 𝑤′

𝑖 for 𝑖 = 1, ..., 𝑘).

The Prover knows the following for 𝐶𝐴 and 𝐶𝐵

{𝑟𝐴, {𝑤𝑖}𝑘
𝑖=1, {𝑤𝑗}𝑚

𝑗=𝑘+1} for 𝐶𝐴

{𝑟𝐵, {𝑤′
𝑖}𝑘

𝑖=1, {𝑤′
𝑙}𝑝

𝑙=𝑘+1} for 𝐶𝐵

where the witnesses {𝑤𝑖}𝑘
𝑖=1 and {𝑤′

𝑖}𝑘
𝑖=1 are the same.

𝐶𝐴 = 𝑟𝐴.𝐺𝐴 +
𝑘

∑
𝑖=1

𝑤𝑖.𝐺𝑖 +
𝑚

∑
𝑗=𝑘+1

𝑤𝑗.𝐺𝑗

𝐶𝐵 = 𝑟𝐵.𝐺𝐵 +
𝑘

∑
𝑖=1

𝑤′
𝑖.𝐺′

𝑖 +
𝑝

∑
𝑙=𝑘+1

𝑤′
𝑙.𝐺′

𝑙

Protocol 1. Prover picks common random 𝑤𝑖,𝑇 for the common witnesses 𝑤𝑖. It selects other
randoms for the other components (𝑟𝐴,𝑇 , 𝑟𝐵,𝑇 , 𝑤𝑗,𝑇 , 𝑤′

𝑙,𝑇). It computes 𝑇𝐴 and 𝑇𝐵:

𝑇𝐴 = 𝑟𝐴,𝑇 .𝐺𝐴 +
𝑘

∑
𝑖=1

𝑤𝑖,𝑇 .𝐺𝑖 +
𝑚

∑
𝑗=𝑘+1

𝑤𝑗,𝑇 .𝐺𝑗

𝑇𝐵 = 𝑟𝐵,𝑇 .𝐺𝐵 +
𝑘

∑
𝑖=1

𝑤𝑖,𝑇 .𝐺′
𝑖 +

𝑝
∑

𝑙=𝑘+1
𝑤′

𝑙,𝑇 .𝐺′
𝑙

2. The prover hashes 𝐶𝐴, 𝐶𝐵, 𝑇𝐴, 𝑇𝐵 to get a challenge 𝑒 ∈ ℤ𝑝 3. Prover computes the
common response set s𝑐𝑜𝑚𝑚𝑜𝑛 = {𝑠𝑖}𝑘

𝑖=1 for the common witnesses, and the unique responses
for the remaining witnesses.

Common responses
𝑠𝑖 = 𝑤𝑖,𝑇 + 𝑒.𝑤𝑖 for 𝑖 = 1, ..., 𝑘

Remaining responses for 𝐶𝐴:

𝑠𝐴,𝑟 = 𝑟𝐴,𝑇 + 𝑒.𝑟𝐴, 𝑠𝑗 = 𝑤𝑗,𝑇 + 𝑒.𝑤𝑗 for unique 𝑗 = 𝑘 + 1, ..., 𝑚

Remaining responses for 𝐶𝐵:

𝑠𝐵,𝑟 = 𝑟𝐵,𝑇 + 𝑒.𝑟𝐵, 𝑠′
𝑙 = 𝑤′

𝑙,𝑇 + 𝑒.𝑤′
𝑙 for unique 𝑙 = 𝑘 + 1, ..., 𝑝

4. The Verifier accepts the proof if and only if both verification equations hold. The Verifier
must use the same submitted response 𝑠𝑖 for the common witnesses components in both
checks:

Verification for 𝐶𝐴:

𝑒.𝐶𝐴 + 𝑇𝐴
?= 𝑠𝐴,𝑟.𝐺𝐴 +

𝑘
∑
𝑖=1

𝑠𝑖.𝐺𝑖 +
𝑚

∑
𝑗=𝑘+1

𝑠𝑗.𝐺𝑗

Verification for 𝐶𝐵:

DART Specification 7

𝑒.𝐶𝐵 + 𝑇𝐵
?= 𝑠𝐵,𝑟.𝐺𝐵 +

𝑘
∑
𝑖=1

𝑠𝑖.𝐺′
𝑖 +

𝑝
∑

𝑙=𝑘+1
𝑠′

𝑙.𝐺′
𝑙

2.2.3 Elgamal and its variations

Elgamal For ElGamal on 𝐺𝑝, a message 𝑀 ∈ 𝔾𝑃 is encrypted under a Public Key 𝐸𝐾(= 𝑒𝑘.𝐺)
as ciphertext 𝐶 = (𝐶1, 𝐶2) where 𝐶1, 𝐶2 ∈ 𝐺𝑝. To encrypt, select random ephemeral key 𝑟 ∈ ℤ𝑝
and then

𝐶 = (𝐶1, 𝐶2) where 𝐶1 = 𝑟.𝐺 and 𝐶2 = 𝑀 + 𝑟.𝐸𝐾
To decrypt, using secret key 𝑒𝑘, get 𝑀 = 𝐶2 − 𝑒𝑘.𝐶1. This variation is used to encrypt public
keys.

Exponent Elgamal For ElGamal on 𝐺𝑝, a message 𝑚 ∈ ℤ𝑝 is encrypted under a Public
Key 𝐸𝐾(= 𝑒𝑘.𝐺) as ciphertext 𝐶 = (𝐶1, 𝐶2) where 𝐶1, 𝐶2 ∈ 𝐺𝑝. To encrypt, select random
ephemeral key 𝑟 ∈ ℤ𝑝 and then

𝐶 = (𝐶1, 𝐶2) where 𝐶1 = 𝑟.𝐺 and 𝐶2 = 𝑚.𝐺 + 𝑟.𝐸𝐾

To decrypt, using secret key 𝑒𝑘, get 𝑚.𝐺 = 𝐶2 − 𝑒𝑘.𝐶1. Now solve for discrete log 𝑚 in 𝑚.𝐺
This variation is used to encrypt small values like account balance, transaction amount, asset
id, etc.

Twisted Elgamal This variant is more useful (efficient and guarantees) when the same message
is supposed to be encrypted for multiple public keys. Say the same message 𝑀 ∈ 𝔾𝑃 is to be
encrypted for 2 public keys 𝐸𝐾1 and 𝐸𝐾2 with twisted Elgamal. To encrypt, select random
ephemeral key 𝑟 ∈ ℤ𝑝 and then

𝐶 = (𝐶1, 𝐶2, 𝐶3) where 𝐶1 = 𝑟.𝐸𝐾1, 𝐶2 = 𝑟.𝐸𝐾2 and 𝐶3 = 𝑀 + 𝑟.𝐺

To decrypt, using secret key 𝑒𝑘1, get 𝑀 = 𝐶3 − 𝑒𝑘−1
1 .𝐶1. To decrypt, using secret key 𝑒𝑘2, get

𝑀 = 𝐶3 − 𝑒𝑘−1
2 .𝐶2.

Note that ciphertext 𝐶 has 3 elements and not 4 like regular Elgamal. In general, with twisted
Elgamal for 𝑛 parties, ciphertext has 𝑛 + 1 elements but each party works only 2 elements.
Twisted Elgamal applies to exponent Elgamal similarly.

2.2.4 Curve Trees

We use Curve Trees 1 as accumulator that support zero knowledge proofs of membership. Think
of them like merkle trees where the hash function is the non-hiding Pedersen commitment.
Conceptually, the tree is created as follows:

Assume its a binary tree. The leaf of the tree are always group element, elliptic curve points
in our case. Say 𝑃0, 𝑃1 are 2 leaves, then their parent node 𝑄 is a non-hiding (no randomness)
commitment to x-coordinates of 𝑃0, 𝑃1 as 𝑄 = 𝐺0 ∗ 𝑃0.𝑥 + 𝐺1 ∗ 𝑃1.𝑥. Then to form the parent
of node 𝑅 from 𝑄 and its siblings, the same process is followed with x-coordinates of 𝑄 and its
siblings but this time the generators used are 𝐺0, 𝐺1 as 𝑅 = 𝐺0 ∗ 𝑄0.𝑥 + 𝐺1 ∗ 𝑄1.𝑥. This is
because 𝑃0.𝑥, 𝑃1.𝑥 and 𝑄0.𝑥, 𝑄1.𝑥 are in different groups and for this reason, we need a cycle
of curves. Because of the homomorphic property of the curve tree hash function (commitment),
updates to the curve tree are very efficient.

The curve tree membership proof contains nodes (commitments) on the path from root to the
leaf but these nodes are randomized, i.e. a blinding value is added to the commitment to make
it a hiding commitment. So in the above example, the proof for say leaf 𝑃0 would contain nodes

https://eprint.iacr.org/2024/1647

DART Specification 8

[𝑃 ′
0, 𝑄′

0, ...] where 𝑃 ′
0 = 𝑃0 + 𝐺 ∗ 𝑟0, 𝑄′

0 = 𝑄0 + 𝐺 ∗ 𝑟1 and so on where [𝑃0, 𝑄0, ...] are the leaf
𝑃0’s path from leaf (𝑃0) to root.

In implementation, a public element Δ is added to a point before taking its x-coordinate and
the curve tree paper explains why then taking x-coodinate is sufficient. Also, we don’t use a
binary tree but much larger arity like 512, 1000 or 2000

2.2.5 Bulletproofs

We use Bulletproofs as a zk-SNARK and the curve tree membership proof is expressed using
R1CS circuit. We also express range proofs and some other relations as R1CS circuit. One of
the benefit of using Bulletproofs is that it allows Commit-and-Prove (CP) SNARKs meaning in
addition to the proof, we also get Pedersen commitments to the desired witnesses. This helps us
bridge (with the Pedersen commitment) Sigma protocols and zk-SNARK proof, meaning we can
ensure that certain Sigma protocol is executing over the same witness(es) as the zk-SNARK.

2.3 System model
The system has few kinds of entities: 1. Investors: These have accounts per asset and send
transactions to transfer assets from their accounts or receive assets in their accounts. Each
investor maintains two key pairs: an encryption key and an affirmation key. Both public keys
are elements of the Pallas curve 𝐺𝑝 and are derived from their respective secret keys. We use
distinct generators 𝐺𝐸𝑛𝑐 and 𝐺𝐴𝑓𝑓 from 𝔾𝑝. - Encryption keys: secret key 𝑒𝑘 ∈ ℤ𝑝 and public
key 𝐸𝐾 = 𝑒𝑘.𝐺𝐸𝑛𝑐 with 𝐸𝐾 ∈ 𝔾𝑝 - Affirmation keys: secret key 𝑠𝑘 ∈ ℤ𝑝 and public key
𝐴𝐾 = 𝑠𝑘.𝐺𝐴𝑓𝑓 with 𝐴𝐾 ∈ 𝔾𝑝

For each investor, the chain also knows its identity 𝐼𝐷 where an 𝐼𝐷 can have any number of
encryption and affirmation keys associated to it. 2. Auditors: These parties are tied to specific
assets and they are supposed to be able to view all transactions for those assets. They only have
an encryption key as (𝑒𝑘, 𝐸𝐾 = 𝑒𝑘.𝐺𝐸𝑛𝑐). An asset may have 0 or more auditors. 3. Mediators:
These parties are also tied to specific assets and they are supposed to be able to view and accept
or reject all transactions for those assets. They have both encryption and affirmation keys. An
asset may have 0 or more mediators.

The encryption key is only used to decrypt the transactions while affimation keys are used to
act on transactions, like approving/disapproving deposit or withdraw. Note that all public keys
are in the Pallas curve.

2.3.1 Assets

Each asset has a unique numeric id and an asset can have 32 bits max and thus its maximum
value is 232 − 1. These are known in code as 𝐴𝑆𝑆𝐸𝑇 _𝐼𝐷_𝐵𝐼𝑇 𝑆 and 𝑀𝐴𝑋_𝐴𝑆𝑆𝐸𝑇 _𝐼𝐷.
Each asset has an issuer which can mint that asset into its account and the chain tracks the asset
issuer by its public key. The maximum total supply any asset can have is 48 bits, i.e. 248 − 1.
These are known in code as 𝐵𝐴𝐿𝐴𝑁𝐶𝐸_𝐵𝐼𝑇 𝑆 and 𝑀𝐴𝑋_𝐵𝐴𝐿𝐴𝑁𝐶𝐸. There are 2 types
of assets, ones which can be used to pay transaction fee and the rest which cant be used for
fee. Each asset can have 0 or more auditors or mediators. Each asset can optionally have 1
trustee whose public key is 𝑝𝑘𝑇 ∈ 𝔾𝑝. This entity is responsible for helping with key recorvery,
clawback of funds, reversal of txns etc. An account while registering for an asset that has a
trustee has to encrypt certain information from his account for 𝑝𝑘𝑇 . The trustee does need the
help of auditor/mediator to do these actions.

DART Specification 9

2.3.2 Accounts and Settlements

Contrary to many other anonymous cryptocurrencies, DART works on account model rather
than UTXO. This is because we want users to prove their exact account balance and not be
able hide any of it

Also, in DART assets can’t be transferred unilaterally as the receiver of the asset has to agree
to receive as well. An exception is portfolio move, where assets are moved between accounts
with the same identity.

Each investor can have only 1 account per asset id and it can be seen as a pair (𝑝𝑘, 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑).
As accounts participate in transactions, their state changes. An account state is a Pedersen
commitment in the Pallas curve and the 𝑖-th account state is:

𝑆𝑡𝑎𝑡𝑒𝑖 = 𝑠𝑘.𝐺𝐴𝑓𝑓+𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐺1+𝑐𝑜𝑢𝑛𝑡𝑒𝑟.𝐺2+𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐺3+𝜌.𝐺4+𝜌𝑖+2.𝐺5+𝑠2𝑖 .𝐺6+𝑖𝑑.𝐺7, 𝑆𝑡𝑎𝑡𝑒𝑖 ∈ 𝔾𝑝

where 𝑠𝑘 - the secret key for their affirmation public key 𝑖𝑑 - their identity 𝐼𝐷, to which all their
public keys are associated 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑 - id of the asset for which the account is 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 - the current
account balance 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 - This is number >= 0 and it can change during various transactions
𝜌 - This is the initial nullifier secret key created during registration. 𝜌𝑖+2 - This is the nullifier
secret key for this state and used when revealing the nullifier for this state. The rationale for
exponent 𝑖 + 2 will be given in a later section. 𝑠 - the randomness of the commitment. The
rationale for 𝑠2𝑖 will be given in a later section.

2.3.2.1 Account state transitions For updating account state from 𝑆𝑡𝑎𝑡𝑒𝑖 to 𝑆𝑡𝑎𝑡𝑒𝑖+1,
𝑆𝑡𝑎𝑡𝑒𝑖 must be invalidated by revealing a nullifier 𝑁 = 𝜌𝑖+2.𝐺5. The chain records 𝑁 in a
set and does not allow to reveal the same nullifier twice, thus preventing multiple new state
transitions from the same old state. The new state will be:

𝑆𝑡𝑎𝑡𝑒𝑖+1 = 𝑠𝑘.𝐺𝐴𝑓𝑓+𝑏𝑎𝑙𝑎𝑛𝑐𝑒′.𝐺1+𝑐𝑜𝑢𝑛𝑡𝑒𝑟′.𝐺2+𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐺3+𝜌.𝐺4+𝜌𝑖+3.𝐺5+𝑠2𝑖+1 .𝐺6+𝑖𝑑.𝐺7, 𝑆𝑡𝑎𝑡𝑒𝑖 ∈ 𝔾𝑝

Note that in the new state 𝑆𝑡𝑎𝑡𝑒𝑖+1, fields 𝑠𝑘, 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑, 𝜌, 𝑖𝑑 don’t change. For invalidating
state 𝑆𝑡𝑎𝑡𝑒𝑖+1 (to transition to 𝑆𝑡𝑎𝑡𝑒𝑖+2), nullifier will be 𝜌𝑖+3.𝐺5.

During state transition from 𝑆𝑡𝑎𝑡𝑒𝑖 to 𝑆𝑡𝑎𝑡𝑒𝑖+1, 𝑆𝑡𝑎𝑡𝑒𝑖 must not be revealed as it allows tracking
the investor. 𝑆𝑡𝑎𝑡𝑒𝑖+1 however is revealed.

To allow for certain operations like key recovery, clawback of funds etc, the nullifier secret key
𝜌𝑖 and randomness 𝑠 are created for each state in a particular way. Each new account state
is supposed to have the exponent of 𝜌 1 more than the previous state’s exponent of 𝜌 and the
randomness of new state is supposed to square of the randomness of previous state.

The starting state of an account is (balance and counter are 0 in initial state)

𝑆𝑡𝑎𝑡𝑒0 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 0.𝐺1 + 0.𝐺2 + 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐺3 + 𝜌.𝐺4 + 𝜌2.𝐺5 + 𝑠.𝐺6 + 𝑖𝑑.𝐺7

Then the next state is

𝑆𝑡𝑎𝑡𝑒1 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙𝑎𝑛𝑐𝑒1.𝐺1 + 𝑐𝑜𝑢𝑛𝑡𝑒𝑟1.𝐺2 + 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐺3 + 𝜌.𝐺4 + 𝜌3.𝐺5 + 𝑠2.𝐺6 + 𝑖𝑑.𝐺7

The next state

𝑆𝑡𝑎𝑡𝑒2 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙𝑎𝑛𝑐𝑒2.𝐺1 + 𝑐𝑜𝑢𝑛𝑡𝑒𝑟2.𝐺2 + 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐺3 + 𝜌.𝐺4 + 𝜌4.𝐺5 + 𝑠4.𝐺6 + 𝑖𝑑.𝐺7

The nullifier secret keys form these powers 𝜌2, 𝜌3, 𝜌4, ... and randomness forms these powers
𝑠, 𝑠2, 𝑠4, 𝑠8, ... and anyone knowing 𝑟ℎ𝑜 or 𝑠 can predict subsequent values. The reason for

DART Specification 10

not constucting nullifier secret key 𝜌𝑖 as 𝜌2, 𝜌4, 𝜌8 is because 𝜌𝑖.𝐺5 is revealed which reduces
security if squares are used (TODO: Link paper and add details). During account registration,
i.e. creating 𝑆𝑡𝑎𝑡𝑒0, if asset has a trustee, then the value 𝑠 is encrypted for 𝑝𝑘𝑇 and published
on chain.

2.3.2.2 Settlements Asset transfers in DART are done through settlements. A settlement
is a transfer of 1 or more assets between 2 or more accounts. A settlement lifecyle for transfer
of a single asset from party (account) 𝐴 to 𝐵 is typically like this: 1. An entity creates a
settlement stating: transfer 10 units of asset-id 𝑎𝑡 from 𝐴 to 𝐵. 2. If party 𝐴 agrees, it will
send an affirmation txn to the chain. This involves 𝐴 to change its account state such that its
𝑏𝑎𝑙𝑎𝑛𝑐𝑒 is decreased by 10 units, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is increased by 1, and few other changes as well. A
proof that the state has been correctly updated is also sent to the chain. This step will nullify
(invalidate) the previous state of account 𝐴 and set this new state as the current active state. 3.
If party 𝐵 also agrees, it will also send an affirmation txn to the chain along its new state where
the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is increased by 1, and some more changes and the proof that the state change is
correct. Similar to above, this step will nullify (invalidate) the previous state of account 𝐵 and
set this new state as the current active state.

Note that the chain does not learn asset-id 𝑎𝑡 or amount of 10 units or any details of accounts
𝐴 and 𝐵 like their public keys, identity, counter, balance, etc. But the integrity of these are
enforced through zero-knowledge proofs.

Above example is just 1 variation of a settlement but settlements can be more involved. Also
detailed explanation of state changes and proofs follow in subsequent sections.

2.3.2.3 Fee account The above description of account states is for assets which are not
used in paying fee. For fee payment asset-ids, the account state is simpler as:

𝑆𝑡𝑎𝑡𝑒𝑖 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐺1 + 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐺3 + 𝜌.𝐺5 + 𝑠.𝐺6, 𝑆𝑡𝑎𝑡𝑒𝑖 ∈ 𝔾𝑝

Reason for this simplicity will be given later.

The state is a Pedersen commitment in a cyclic group. Similar to above, the account state’s
witnesses don’t have counter and “age” components.

For updating account state from 𝑆𝑡𝑎𝑡𝑒𝑖 to 𝑆𝑡𝑎𝑡𝑒𝑖+1, 𝑆𝑡𝑎𝑡𝑒𝑖 must be invalidated by revealing a
nullifier 𝑁 = 𝜌.𝐺5. Similar to above, the chain records 𝑁 in a set and does not allow to reveal
the same nullifier twice. The new state will be:

𝑆𝑡𝑎𝑡𝑒𝑖+1 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙𝑎𝑛𝑐𝑒′.𝐺1 + 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐺3 + 𝜌′.𝐺5 + 𝑠′.𝐺6, 𝑆𝑡𝑎𝑡𝑒𝑖 ∈ 𝔾𝑝

Note that in the new state 𝑆𝑡𝑎𝑡𝑒𝑖+1, fields 𝑠𝑘, 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑 don’t change but new 𝜌′, 𝑠′ are sampled
randomly.

2.3.3 Accumualtors

The system uses curve trees as accumulator and has 3 curve trees. 1. Asset curve tree: Each leaf
of this tree corresponds to an asset and stores the 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑 and the public keys of its auditors
and mediators. When issuers register a new asset, a new leaf is added to this tree. When
they update existing asset, their leaf is updated accordingly. A leaf of the asset tree is a group
element in 𝔾𝑞 and thus a point on Vesta curve. It is Pedersen commitment to the “asset-id”
and x-coordinates of the public keys of auditors and mediators as:

𝐿𝑒𝑎𝑓𝑎𝑠𝑠𝑒𝑡_𝑖𝑑 = (𝐴𝑇 .𝑥).𝐺 + (𝐸𝐾1.𝑥).𝐺1 + (𝐸𝐾2.𝑥).𝐺2 + ... + (𝐸𝐾𝑛.𝑥).𝐺𝑛, 𝐿𝑒𝑎𝑓𝑎𝑠𝑠𝑒𝑡_𝑖𝑑 ∈ 𝔾𝑞

DART Specification 11

Here - (𝐴𝑇 .𝑥) refers to taking the x-coordinate of point 𝐴𝑇 = 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐽 𝐴 ∈ 𝔾𝑝 - (𝐸𝐾𝑖.𝑥)
refers to taking the x-coordinate of public key 𝐸𝐾𝑖 of the 𝑖-th auditor/mediator. The x-
coordinates are taken using the same approach as done by curve tree paper: adding a public
element Δ to 𝐸𝐾𝑖 and taking the x-coordinate of the result 2. Fee account curve tree: Each
leaf of this tree corresponds to an account state for a fee paying asset. As fee payments are
done, existing states of those accounts are invalidated by revealing the nullifier (more on that
later) and new states are added. A leaf of this tree is an account state as:

𝐿𝑒𝑎𝑓𝑖 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐺1 + 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐺2 + 𝜌.𝐺3 + 𝑠.𝐺4, 𝐿𝑒𝑎𝑓𝑖 ∈ 𝔾𝑝

This is an append only tree and leaves once added are never removed. And states of all fee paying
accounts regardless of the asset-id are captured in this tree. 3. Main account curve tree: Each
leaf of this tree corresponds to an account state for a non-fee paying asset. As corresponding
transcations are done, existing states of those accounts are invalidated by revealing the nullifier
(more on that later) and new states are added. A leaf of this tree is an account state as:

𝐿𝑒𝑎𝑓𝑖 = 𝑠𝑘.𝐺𝐴𝑓𝑓+𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐺1+𝑐𝑜𝑢𝑛𝑡𝑒𝑟.𝐺2+𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐺3+𝜌.𝐺4+𝜌𝑖+2.𝐺5+𝑠2𝑖 .𝐺6+𝑖𝑑.𝐺7, 𝐿𝑒𝑎𝑓𝑖 ∈ 𝔾𝑝

This is also an append only tree and leaves once added are never removed. And states of all
non-fee paying accounts regardless of the asset-id are captured in this tree.

Reason for having 2 separate trees of different accounts is given later.

2.3.4 Asset-account mapping

The chain allows 1 public key to have only 1 account per asset-id. This is done by a Asset-
account registration step where the account’s public key and asset-id are revealed and the chain
keeps them in a mapping disallowing that public key to register for the same asset-id again.
This is to ensure that a public key can do an accurate proof-of-balance for that asset without
hiding any amount of that asset.

2.4 Key registration
This is the first step where all entities- investors, auditors, mediators, register their keys. This
is not registration for an asset but a proof of knowledge of secret key for the public key. A
simple implementation of this is a proof of knowledge of the discrete log in these 2 relations
which can be done with a folklore sigma protocol (Schnorr):

𝐸𝐾 = 𝑒𝑘.𝐺𝐸𝑛𝑐, 𝐴𝐾 = 𝑠𝑘.𝐺𝐴𝑓𝑓

But since we allow users (think institutions) to onboard a large number of keys in a single txn,
we use the batch Schnorr protocol from Fig. 2 of 2 (Fig. 2 has a typo in the last equation
where 𝑔𝑦 should be 𝑔𝑠) and implement the key registration as: 1. Prover (user) wants to list the
public keys [(𝐸𝐾1, 𝐴𝐾1), (𝐸𝐾2, 𝐴𝐾2), ...(𝐸𝐾𝑛, 𝐴𝐾𝑛)] and has the corresponding secret keys
[(𝑒𝑘1, 𝑠𝑘1), (𝑒𝑘2, 𝑠𝑘2), ..., (𝑒𝑘𝑛, 𝑠𝑘𝑛)] 2. Prover picks random:

𝑟𝑒𝑛𝑐
$← ℤ𝑝

𝑟𝑎𝑓𝑓
$← ℤ𝑝

https://iacr.org/archive/asiacrypt2004/33290273/33290273.pdf

DART Specification 12

3. Prover creates 𝑇𝑒𝑛𝑐 = 𝑟𝑒𝑛𝑐.𝐺𝐸𝑛𝑐, 𝑇𝑎𝑓𝑓 = 𝑟𝑎𝑓𝑓 .𝐺𝐴𝑓𝑓

4. Prover hashes [(𝐸𝐾1, 𝐴𝐾1), (𝐸𝐾2, 𝐴𝐾2), ...(𝐸𝐾𝑛, 𝐴𝐾𝑛)], 𝑇𝑒𝑛𝑐, 𝑇𝑎𝑓𝑓 to get a
challenge 𝑐 ∈ ℤ𝑝

5. Prover creates responses as:

𝑠𝑒𝑛𝑐 = 𝑟𝑒𝑛𝑐 +
𝑛

∑
𝑖=1

𝑐𝑖.𝑒𝑘𝑖

𝑠𝑎𝑓𝑓 = 𝑟𝑎𝑓𝑓 +
𝑛

∑
𝑖=1

𝑐𝑖.𝑠𝑘𝑖

6. Verifier now checks:

𝑠𝑒𝑛𝑐.𝐺𝐸𝑛𝑐
?= 𝑇𝑒𝑛𝑐 +

𝑛
∑
𝑖=1

𝑐𝑖.𝐸𝐾𝑖

𝑠𝑎𝑓𝑓 .𝐺𝐴𝑓𝑓
?= 𝑇𝑎𝑓𝑓 +

𝑛
∑
𝑖=1

𝑐𝑖.𝐴𝐾𝑖

Similarly, multiple encryption keys of auditors/mediators can be registered in one key registra-
tion proof by following the protocol above and ignoring 𝐴𝐾𝑖 and corresponding relations

DART Specification 13

3 Account Registration
3.1 Account registration
This process is used by an investor when it wants to start trading in an asset, i.e. be either a
sender or receiver of that asset. It can only be done once by any public key for a particular
asset and is done only for non-fee assets. The public key 𝑃𝐾𝐴𝑓𝑓 must already be registered as
per the above protocol A successful completion of registration results in the following:

1. A state 𝑆𝑡𝑎𝑡𝑒0 being inserted as a leaf in the accounts curve tree where

𝑆𝑡𝑎𝑡𝑒0 = 𝑠𝑘.𝐺𝐴𝑓𝑓+𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐺3+𝜌.𝐺4+𝜌2.𝐺5+𝑠.𝐺6+𝑖𝑑.𝐺7, balance and counter are 0 during registration

2. Pair asset-id, public key (𝑎𝑠𝑠𝑒𝑡_𝑖𝑑, 𝑃𝐾𝐴𝑓𝑓(= 𝑠𝑘.𝐺𝐴𝑓𝑓)) is added to the Asset-account
mapping

3. Nullifier 𝑁 = 𝜌.𝐺4 is revealed by user and chain adds it to the nullifier set.
4. If asset has a trustee with public key 𝑝𝑘𝑇 , encryption of 𝑠 for 𝑝𝑘𝑇 is published on chain.

Account creation

1. User picks a nonce 𝑐, appends to the asset-id 𝑎𝑡 to get the combined value 𝑎𝑡||𝑐. It
then passes it secret key 𝑠𝑘 and 𝑎𝑡||𝑐 to Poseidon2 hash to get the nullifier secret key
𝜌 = 𝑃 𝑜𝑠𝑒𝑖𝑑𝑜𝑛2(𝑠𝑘, 𝑎𝑡||𝑐). The nonce 𝑐 is used in case user wants to re-register (account
recovery, etc), it can generate a new 𝜌

2. User picks a random:

𝑠 $← ℤ𝑝

3. It now creates its initial account state 𝑆𝑡𝑎𝑡𝑒0 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐺3 + 𝜌.𝐺4 + 𝜌2.𝐺5 +
𝑠.𝐺6 + 𝑖𝑑.𝐺7

3.1.1 Protocol

Here the prover (investor) wants to prove following relations:

1. 𝑆𝑡𝑎𝑡𝑒0 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑎𝑡.𝐺3 + 𝜌.𝐺4 + 𝜌2.𝐺5 + 𝑠.𝐺6 + 𝑖𝑑.𝐺7. This is equivalent to proving
𝑆𝑡𝑎𝑡𝑒0 = 𝐴𝐾 + 𝑎𝑡.𝐺3 + 𝑁 + 𝜌2.𝐺5 + 𝑠.𝐺6 + 𝑖𝑑.𝐺7 since 𝑁 and public key 𝐴𝐾 is revealed
to the verifier.

2. 𝑁 = 𝜌.𝐺4
3. 𝜌 = 𝑃 𝑜𝑠𝑒𝑖𝑑𝑜𝑛2(𝑠𝑘, 𝑎𝑡||𝑐)
4. 𝜌2 = 𝜌.𝜌
5. 𝐴𝐾 = 𝑠𝑘.𝐺𝐴𝑓𝑓
6. If asset has associated 𝑝𝑘𝑇 , then ciphertext 𝐶 correctly encrypts 𝑠. Since 𝑠 ∈ ℤ𝑝 (be-

longs to scalar field of Pallas curve) and is large, 255-bit in our case, if its just en-
crypted in exponent-Elgamal, the descryption will be impractical since the decryptor
(𝑝𝑘𝑇) has to solve discrete log of a 255-bit value. Thus prover breaks it into small chunks
and encrypts each chunk using exponent-Elgamal encryption. These chunks are small
enough so that discrete log over them can be completeled in reasonable time (few min-
utes). 𝐶𝐻𝑈𝑁𝐾_𝐵𝐼𝑇 𝑆 denotes the bit size of each chunk and 𝑁𝑈𝑀_𝐶𝐻𝑈𝑁𝐾𝑆 de-
notes the total number of chunks. In our implementation, 𝐶𝐻𝑈𝑁𝐾_𝐵𝐼𝑇 𝑆 = 48 and
𝑁𝑈𝑀_𝐶𝐻𝑈𝑁𝐾𝑆 = 6 since ⌈255

48 ⌉ = 6 and this means 6 chunks are sufficent to encode
the 255-bit value Since Elgamal is homomorphic, these encryptions of chunks can be com-
bined together to get an encryption of the whole 𝑠 which can then be used in a Sigma
protocol to show its equality with the 𝑠 used in account state 𝑆𝑡𝑎𝑡𝑒0

DART Specification 14

Following describes the protocol assuming a 𝑝𝑘𝑇 exists but its simple to avoid corrsponding
parts of the proof if asset does not have 𝑝𝑘𝑇

Instance: 𝑆𝑡𝑎𝑡𝑒0, 𝐴𝐾, 𝑎𝑡, 𝑐, 𝑁, 𝑖𝑑, 𝐶𝑖, 𝑝𝑘𝑇 , 𝐺𝐴𝑓𝑓 , 𝐺𝐸𝑛𝑐, 𝐺𝑖, 𝐻𝑖

Witness: 𝑠𝑘, 𝜌, 𝑠, 𝑠chunks𝑖
, 𝑟enc𝑖

.

Above are the high level instance and witness values known before the protocol starts and don’t
include instance and witness created during protocol execution like the various blindings and 𝑇
values.

3.1.1.1 Prover

1. Prover first wants to prove knowledge of 𝜌2, 𝑠 in the relation 𝜌2.𝐺5 + 𝑠.𝐺6 = 𝑆𝑡𝑎𝑡𝑒0 −
𝐴𝐾 − 𝑎𝑡.𝐺3 − 𝑁 − 𝑖𝑑.𝐺7. This is just relation 1 from above rearranged where values on
RHS are public. Lets call these 𝐷 as 𝐷 = 𝑆𝑡𝑎𝑡𝑒0 − 𝐴𝐾 − 𝑎𝑡.𝐺3 − 𝑁 − 𝑖𝑑.𝐺7 So prover
wants to prove knowledge of 𝜌2, 𝑠 in 𝜌.𝐺4 + 𝜌2.𝐺5 + 𝑠.𝐺6 = 𝐷 and will do with a Sigma
protocol

2. Prover picks random 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝜌2
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 ∈ ℤ𝑝 and creates 𝑇𝑠𝑡𝑎𝑡𝑒 = 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺4 +

𝜌2
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺5 + 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺6 𝑇𝑛𝑢𝑙𝑙 = 𝜌.𝐺4

3. If 𝑝𝑘𝑇 exists, break randomness 𝑠 in 𝑁𝑈𝑀_𝐶𝐻𝑈𝑁𝐾𝑆 chunks and encrypt each chunk us-
ing exponent Elgamal as: 𝐶𝑖 = (𝐶𝑖,0, 𝐶𝑖,1) = (𝑟enc𝑖

.𝐺Enc, 𝑟enc𝑖
.𝑝𝑘𝑇 +𝑠chunks𝑖

.𝐺), 𝐶𝑖 ∈ 𝔾2
𝑝

where 𝐶𝑖 is ciphertext of 𝑖-th chunk, 𝑠𝑐ℎ𝑢𝑛𝑘𝑠 is the base-2𝐶𝐻𝑈𝑁𝐾_𝐵𝐼𝑇 𝑆 representation of 𝑠
and it has 𝑁𝑈𝑀_𝐶𝐻𝑈𝑁𝐾𝑆 digits and 𝑟𝑒𝑛𝑐𝑖

∈ ℤ𝑝 is the randomness for the encryption.

4. Note that 𝐶𝑜𝑚𝑠 = ∑𝑖 2𝑖⋅CHUNK_BITS ⋅ 𝐶𝑖1
= ∑𝑖 2𝑖⋅CHUNK_BITS ⋅ 𝑟enc𝑖

⋅ 𝑝𝑘𝑇 + 𝑠 ⋅ 𝐺 𝐶𝑜𝑚𝑟 =
∑𝑖 2𝑖⋅CHUNK_BITS ⋅ 𝐶𝑖0

= ∑𝑖 2𝑖⋅CHUNK_BITS ⋅ 𝑟enc𝑖
⋅ 𝐺Enc and the scalar multiple of 𝑝𝑘𝑇

in 𝐶𝑜𝑚𝑠 is same as the multiple of 𝐺𝐸𝑛𝑐 in 𝐶𝑜𝑚𝑟 and that multiple of 𝐺 is 𝑠. Prover
uses Sigma protocol (Chaum Pedersen) to prove equality of both multiples: Pick random
𝑟𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ∈ ℤ𝑝 and reuse for 𝑠 and create 𝑇𝑟−𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑟𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑.𝐺𝐸𝑛𝑐, 𝑇𝑠−𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =
𝑟𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑.𝑝𝑘𝑇 + 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺, where 𝑇𝑟−𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑, 𝑇𝑠−𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ∈ 𝔾𝑝

5. The prover also needs to prove that each 𝑠chunks𝑖
is a 𝐶𝐻𝑈𝑁𝐾_𝐵𝐼𝑇 𝑆-bit value else it

can create large values for 𝑠chunks𝑖
which are valid base-2CHUNK_BITS representation digits

but are so large that can’t be practically retrieved using discrete log solving algorithms.
For this the prover uses Bulletproofs and enforces range proof constraints for each 𝑠chunk𝑖

6. For proving knowledge of 𝑟enc𝑖
, 𝑠chunks𝑖

the prover inializes Sigma protocols, 2 for each
chunk. It first creates blindings and the commits to them as For 𝑖-th chunk, pick ran-
dom 𝑟enc−blinding𝑖

, 𝑠chunks−blinding𝑖
∈ ℤ𝑝 and create 𝑇enc𝑖

= 𝑟enc−blinding𝑖
.𝐺Enc, 𝑇chunks𝑖

=
𝑟enc−blinding𝑖

.𝑝𝑘𝑇 + 𝑠chunks−blinding𝑖
.𝐺, where 𝑇enc𝑖

, 𝑇chunks𝑖
∈ 𝔾𝑝

7. For proving 𝜌 = 𝑃𝑜𝑠𝑒𝑖𝑑𝑜𝑛2(𝑠𝑘, 𝑎𝑡||𝑐) and 𝜌2 = 𝜌 ∗ 𝜌, prover uses Bulletproofs constraints
for Poseidon2 and a multiplication

8. Prover needs to prove that Bulletproofs constraints used in steps 5, and 7 do indeed
enforce on 𝑠𝑘, 𝑠𝑐ℎ𝑢𝑛𝑘𝑠𝑖

, 𝜌, and, 𝜌2. Prover uses Sigma protocol (Chaum Pedersen) to prove
equality of committed values in Bulletproof’s commitment (corresponding to its witnesses)
and in 𝑆𝑡𝑎𝑡𝑒0, and, 𝐶𝑖. Let 𝐶𝐵𝑃𝜌

and 𝐶𝑠 be Bulletproof’s commitments to these values:

𝐶𝐵𝑃𝜌
= 𝑏.𝐻0 + 𝑠𝑘.𝐻1 + 𝜌.𝐻2 + 𝜌2.𝐻3, ∈ 𝔾𝑝

DART Specification 15

𝐶𝐵𝑃𝑠
= 𝑏′.𝐻0+𝑠𝑐ℎ𝑢𝑛𝑘𝑠0

.𝐻1+𝑠𝑐ℎ𝑢𝑛𝑘𝑠1
.𝐻2+...+𝑠𝑐ℎ𝑢𝑛𝑘𝑠𝑁𝑈𝑀_𝐶𝐻𝑈𝑁𝐾𝑆−1

.𝐻𝑁𝑈𝑀_𝐶𝐻𝑈𝑁𝐾𝑆, ∈ 𝔾𝑝

Here 𝑏, 𝑏′ are blindings to the commitment added by Bulletproof.

9. Prover proves knowledge of above committed values and equality of these with other
commitments as: Pick random 𝑟𝐵𝑃𝜌

∈ ℤ𝑝 and 𝑟𝐵𝑃𝑠
∈ ℤ𝑝 and create

𝑇𝐵𝑃𝜌
= 𝑟𝐵𝑃𝜌

.𝐻0 + 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻1 + 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻2 + 𝜌2
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻3, ∈ 𝔾𝑝

𝑇𝐵𝑃𝑠
= 𝑟𝐵𝑃𝑠

.𝐻0+𝑠𝑐ℎ𝑢𝑛𝑘𝑠−𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔0
.𝐻1+𝑠𝑐ℎ𝑢𝑛𝑘𝑠−𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔1

.𝐻2+...+𝑠𝑐ℎ𝑢𝑛𝑘𝑠−𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑁𝑈𝑀_𝐶𝐻𝑈𝑁𝐾𝑆−1
.𝐻𝑁𝑈𝑀_𝐶𝐻𝑈𝑁𝐾𝑆, ∈ 𝔾𝑝

10. And to prove knowledge of secret key in its affirmation key 𝐴𝐾, it picks random 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
and creates 𝑇𝑝𝑘 = 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺𝐴𝑓𝑓

11. Prover hashes the following to create challenge 𝑐 as:

𝑐 = 𝐻𝑎𝑠ℎ(𝑆𝑡𝑎𝑡𝑒0, 𝐴𝐾, 𝑎𝑡, 𝑐, 𝑁, 𝑖𝑑, 𝐶𝑖, 𝑝𝑘𝑇 , 𝐶𝑜𝑚𝑠, 𝐶𝑜𝑚𝑟, 𝐶𝐵𝑃𝜌
, 𝐶𝐵𝑃𝑠

, 𝑇𝑠𝑡𝑎𝑡𝑒, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝑟−𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑, 𝑇𝑠−𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑, 𝑇𝑒𝑛𝑐𝑖
, 𝑇𝑐ℎ𝑢𝑛𝑘𝑠𝑖

, 𝑇𝐵𝑃𝜌
, 𝑇𝐵𝑃𝑠

, 𝑇𝑝𝑘)

12. Prover now creates responses for each sigma protocol as: 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒 = [𝜌2
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌2.𝑐, 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠.𝑐]

𝑅𝑒𝑠𝑝𝑝𝑘 = 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠𝑘.𝑐 𝑅𝑒𝑠𝑝𝑛𝑢𝑙𝑙 = 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝜌.𝑐 𝑅𝑒𝑠𝑝𝑟 = 𝑟combined+∑𝑖 2𝑖⋅CHUNK_BITS ⋅
𝑟enc𝑖

⋅ 𝑐 Note that since prover already created response for witness 𝑠 as 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠.𝑐 in
𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒, it has both responses for 𝐶𝑜𝑚𝑠.

13. Creates responses for 𝐶𝑖: 𝑅𝑒𝑠𝑝𝑖,0 = 𝑟𝑒𝑛𝑐−𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑖
+𝑟𝑒𝑛𝑐𝑖

.𝑐 𝑅𝑒𝑠𝑝𝑠𝑐ℎ𝑢𝑛𝑘𝑠𝑖
= 𝑠𝑐ℎ𝑢𝑛𝑘𝑠−𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑖

+
𝑠𝑐ℎ𝑢𝑛𝑘𝑠𝑖

.𝑐 Note that 𝑅𝑒𝑠𝑝𝑖,0 is used as well for checking relation 𝐶𝑖,1

14. For relations, 𝐶𝐵𝑃𝜌
, 𝐶𝐵𝑃𝑠

, only the responses for witnesses 𝑏, 𝑏′ need to be created as the
responses of other witnesses are already created. 𝑅𝑒𝑠𝑝𝑏 = 𝑟𝐵𝑃𝜌

+ 𝑏.𝑐 𝑅𝑒𝑠𝑝𝑏′ = 𝑟𝐵𝑃𝑠
+ 𝑏′.𝑐

15. The proof is

(𝐶𝐵𝑃𝜌
, 𝐶𝐵𝑃𝑠

, 𝑇𝑠𝑡𝑎𝑡𝑒, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝑟−𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑, 𝑇𝑠−𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑, 𝑇𝑒𝑛𝑐𝑖
, 𝑇𝑐ℎ𝑢𝑛𝑘𝑠𝑖

, 𝑇𝐵𝑃𝜌
, 𝑇𝐵𝑃𝑠

, 𝑇𝑝𝑘, 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒, 𝑅𝑒𝑠𝑝𝑝𝑘, 𝑅𝑒𝑠𝑝𝑛𝑢𝑙𝑙, 𝑅𝑒𝑠𝑝𝑟, 𝑅𝑒𝑠𝑝𝑖,0, 𝑅𝑒𝑠𝑝𝑠𝑐ℎ𝑢𝑛𝑘𝑠𝑖
, 𝑅𝑒𝑠𝑝𝑏, 𝑅𝑒𝑠𝑝𝑏′)

3.1.1.2 Verifier

1. Verifier hashes the following to create challenge 𝑐 as:

𝑐 = 𝐻𝑎𝑠ℎ(𝑆𝑡𝑎𝑡𝑒0, 𝐴𝐾, 𝑎𝑡, 𝑐, 𝑁, 𝑖𝑑, 𝐶𝑖, 𝑝𝑘𝑇 , 𝐶𝑜𝑚𝑠, 𝐶𝑜𝑚𝑟, 𝐶𝐵𝑃𝜌
, 𝐶𝐵𝑃𝑠

, 𝑇𝑠𝑡𝑎𝑡𝑒, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝑟−𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑, 𝑇𝑠−𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑, 𝑇𝑒𝑛𝑐𝑖
, 𝑇𝑐ℎ𝑢𝑛𝑘𝑠𝑖

, 𝑇𝐵𝑃𝜌
, 𝑇𝐵𝑃𝑠

, 𝑇𝑝𝑘)

2. Enforces constraints in Bulletproof for Poseidon2 and a multiplication for 𝜌 generation
and 𝜌2 = 𝜌.𝜌 respectively

3. Enforces constraints in Bulletproof for 𝑁𝑈𝑀_𝐶𝐻𝑈𝑁𝐾𝑆 range proofs, one for each
chunk.

4. Verifies correctness of 𝑆𝑡𝑎𝑡𝑒0 by checking: 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒[0].𝐺5 + 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒[1].𝐺6
?= 𝑇𝑠𝑡𝑎𝑡𝑒 +

𝑆𝑡𝑎𝑡𝑒0.𝑐 ⟹ (𝜌2
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌2.𝑐).𝐺5 + (𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠.𝑐).𝐺6

?= 𝑇𝑠𝑡𝑎𝑡𝑒 + 𝑆𝑡𝑎𝑡𝑒0.𝑐
5. Verifies correctness of 𝑝𝑘 by checking: 𝑅𝑒𝑠𝑝𝑝𝑘.𝐺𝐴𝑓𝑓

?= 𝑇𝑝𝑘 + 𝐴𝐾.𝑐 ⟹ (𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 +
𝑠𝑘.𝑐).𝐺𝐴𝑓𝑓

?= 𝑇𝑝𝑘 + 𝐴𝐾.𝑐
6. Verifies correctness of 𝑁 by checking: 𝑅𝑒𝑠𝑝𝑛𝑢𝑙𝑙.𝐺4

?= 𝑇𝑛𝑢𝑙𝑙+𝑁.𝑐 ⟹ (𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝜌.𝑐).𝐺4
?=

𝑇𝑛𝑢𝑙𝑙 + 𝑁.𝑐

DART Specification 16

7. Verifier creates 𝐶𝑜𝑚𝑟 and 𝐶𝑜𝑚𝑠 as: 𝐶𝑜𝑚𝑟 = ∑𝑖 2𝑖⋅CHUNK_BITS ⋅ 𝐶𝑖0
𝐶𝑜𝑚𝑠 =

∑𝑖 2𝑖⋅CHUNK_BITS ⋅ 𝐶𝑖1

8. Verifies correctness of 𝐶𝑜𝑚𝑟 by checking: 𝑅𝑒𝑠𝑝𝑟.𝐺𝑒𝑛𝑐
?= 𝑇𝑟−𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 + 𝐶𝑜𝑚𝑟.𝑐 ⟹

(𝑟combined + ∑𝑖 2𝑖⋅CHUNK_BITS ⋅ 𝑟enc𝑖
⋅ 𝑐) ⋅ 𝐺enc

?= 𝑇𝑟−combined + 𝐶𝑜𝑚𝑟 ⋅ 𝑐
9. Verifies correctness of 𝐶𝑜𝑚𝑠 by checking: 𝑅𝑒𝑠𝑝𝑟.𝑝𝑘𝑇 + 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒[1].𝐺 ?= 𝑇𝑠−𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 +

𝐶𝑜𝑚𝑠.𝑐 ⟹ (𝑟combined + ∑𝑖 2𝑖⋅CHUNK_BITS ⋅ 𝑟enc𝑖
⋅ 𝑐) ⋅ 𝑝𝑘𝑇 + (𝑠blinding + 𝑠 ⋅ 𝑐) ⋅ 𝐺 ?=

𝑇𝑠−combined + 𝐶𝑜𝑚𝑠 ⋅ 𝑐
10. Verifier checks response for 𝐶𝑖,0 as: 𝑅𝑒𝑠𝑝𝑖,0.𝐺𝐸𝑛𝑐

?= 𝑇𝑒𝑛𝑐𝑖
+ 𝐶𝑖,0.𝑐 ⟹ (𝑟𝑒𝑛𝑐−𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑖

+
𝑟𝑒𝑛𝑐𝑖

.𝑐).𝐺𝐸𝑛𝑐
?= 𝑇𝑒𝑛𝑐𝑖

+ 𝐶𝑖,0.𝑐
11. Verifier checks response for 𝐶𝑖,1 as: 𝑅𝑒𝑠𝑝𝑖,0.𝑝𝑘𝑇 + 𝑅𝑒𝑠𝑝𝑠𝑐ℎ𝑢𝑛𝑘𝑠𝑖

.𝐺 ?= 𝑇𝑐ℎ𝑢𝑛𝑘𝑠𝑖
+ 𝐶𝑖,1.𝑐

⟹ (𝑟𝑒𝑛𝑐−𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑖
+ 𝑟𝑒𝑛𝑐𝑖

.𝑐).𝑝𝑘𝑇 + (𝑠𝑐ℎ𝑢𝑛𝑘𝑠−𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑖
+ 𝑠𝑐ℎ𝑢𝑛𝑘𝑠𝑖

.𝑐).𝐺 ?= 𝑇𝑐ℎ𝑢𝑛𝑘𝑠𝑖
+ 𝐶𝑖,1.𝑐

12. Verifier checks response for 𝐶𝐵𝑃𝜌
as: 𝑅𝑒𝑠𝑝𝑏.𝐻0 + 𝑅𝑒𝑠𝑝𝑝𝑘.𝐻1 + 𝑅𝑒𝑠𝑝𝑛𝑢𝑙𝑙.𝐻2 +

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒[0].𝐻3
?= 𝑇𝐵𝑃𝜌

+ 𝐶𝐵𝑃𝜌
.𝑐 ⟹ (𝑟𝐵𝑃𝜌

+ 𝑏.𝑐).𝐻0 + (𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠𝑘.𝑐).𝐻1 +
(𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌.𝑐).𝐻2 + (𝜌2

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌2.𝑐).𝐻3
?= 𝑇𝐵𝑃𝜌

+ 𝐶𝐵𝑃𝜌
.𝑐

13. Verifier checks response for 𝐶𝐵𝑃𝑠
as: 𝑅𝑒𝑠𝑝𝑏′ .𝐻0 + 𝑅𝑒𝑠𝑝𝑠𝑐ℎ𝑢𝑛𝑘𝑠0

.𝐻1 + 𝑅𝑒𝑠𝑝𝑠𝑐ℎ𝑢𝑛𝑘𝑠1
.𝐻2 +

... + 𝑅𝑒𝑠𝑝𝑠𝑐ℎ𝑢𝑛𝑘𝑠𝑁𝑈𝑀𝐶𝐻𝑈𝑁𝐾𝑆−1
.𝐻𝑁𝑈𝑀𝐶𝐻𝑈𝑁𝐾𝑆

?= 𝑇𝐵𝑃𝑠
+ 𝐶𝐵𝑃𝑠

.𝑐 ⟹ (𝑟𝐵𝑃𝑠
+

𝑏′.𝑐).𝐻0 + (𝑠𝑐ℎ𝑢𝑛𝑘𝑠−𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔0
+ 𝑠𝑐ℎ𝑢𝑛𝑘𝑠0

).𝐻1 + (𝑠𝑐ℎ𝑢𝑛𝑘𝑠−𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔1
+ 𝑠𝑐ℎ𝑢𝑛𝑘𝑠1

).𝐻2 + ... +
(𝑠𝑐ℎ𝑢𝑛𝑘𝑠−𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑁𝑈𝑀𝐶𝐻𝑈𝑁𝐾𝑆−1

+ 𝑠𝑐ℎ𝑢𝑛𝑘𝑠𝑁𝑈𝑀𝐶𝐻𝑈𝑁𝐾𝑆−1
).𝐻𝑁𝑈𝑀𝐶𝐻𝑈𝑁𝐾𝑆

?= 𝑇𝐵𝑃𝑠
+ 𝐶𝐵𝑃𝑠

.𝑐
14. Verifier finally checks the Bulletproofs proof that verifies all constraints, i.e for Poseidon2,

multiplication and range proofs

DART Specification 17

4 Asset Minting
4.1 Asset minting
This process is done by an issuer who wants to mint some quantity of an asset that he created
into his own account. The asset-id is public and so is the minted amount. Issuer’s key 𝐴𝐾 and
it identity 𝑖𝑑 are also public. The chain ensures that the total minted amount can never exceed
𝑀𝐴𝑋_𝐵𝐴𝐿𝐴𝑁𝐶𝐸 and thus there is no range proof required on the balance in the new state.

A successful completion of minting results in the following: 1. The issuer’s old account state
𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 is invalidated and new state 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 is created. However, 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 cannot be revealed
as it identifies which account state is being invalidated. So a randomized version of it 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
is used in relations. 2. Nullifier 𝑁 = 𝜌𝑖.𝐺5 is revealed by issuer and chain adds it to the nullifier
set. Here 𝜌𝑖 refers to the nullifier secret key of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 3. The balance in 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 is more than
balance in 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 by the minted amount 4. 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 is inserted as a new leaf in the curve
tree.

4.1.1 Protocol

Here the prover (issuer) wants to prove following relations when minting amount 𝑣:

1. 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙0.𝐺1 + 𝑐𝑛𝑡.𝐺2 + 𝑎𝑡.𝐺3 + 𝜌.𝐺4 + 𝜌𝑖.𝐺5 + 𝑠𝑗.𝐺6 + 𝑖𝑑.𝐺7. This is
equivalent to proving 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 = 𝐴𝐾 + 𝑏𝑎𝑙0.𝐺1 + 𝑐𝑛𝑡.𝐺2 + 𝑎𝑡.𝐺3 + 𝜌.𝐺4 + 𝜌𝑖.𝐺5 + 𝑠𝑗.𝐺6 +
𝑖𝑑.𝐺7 since public key 𝐴𝐾 is revealed to the verifier.

2. Similarly 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 = 𝐴𝐾 + 𝑏𝑎𝑙1.𝐺1 + 𝑐𝑛𝑡.𝐺2 + 𝑎𝑡.𝐺3 + 𝜌.𝐺4 + 𝜌𝑖+1.𝐺5 + 𝑠2.𝑗.𝐺6 + 𝑖𝑑.𝐺7.
Since 𝑏𝑎𝑙0 = 𝑣 + 𝑏𝑎𝑙1, this is equivalent to 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 − 𝑣.𝐺1 = 𝐴𝐾 + 𝑏𝑎𝑙0.𝐺1 + 𝑐𝑛𝑡.𝐺2 +
𝑎𝑡.𝐺3 + 𝜌.𝐺4 + 𝜌𝑖+1.𝐺5 + 𝑠2.𝑗.𝐺6 + 𝑖𝑑.𝐺7

3. 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 exists in the accumulator (account curve tree)
4. 𝑁 = 𝜌𝑖.𝐺5
5. 𝐴𝐾 = 𝑠𝑘.𝐺𝐴𝑓𝑓
6. 𝜌𝑖+1 = 𝜌.𝜌𝑖

7. 𝑠2.𝑗 = 𝑠𝑗.𝑠𝑗

8. 𝑏𝑎𝑙1 = 𝑏𝑎𝑙0 + 𝑣
Instance: 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝐴𝐾, 𝑎𝑡, 𝑁, 𝑖𝑑, 𝑣, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐺𝐴𝑓𝑓 , 𝐺𝑖, 𝐻𝑖, 𝐺, 𝐺𝑖, 𝐻, 𝐻𝑖 ∈ 𝔾𝑞

Witness: 𝑠𝑘, 𝑏𝑎𝑙0, 𝑏𝑎𝑙1, 𝑐𝑛𝑡, 𝜌, 𝜌𝑖, 𝜌𝑖+1, 𝑠𝑗, 𝑠2.𝑗, 𝑃𝑎𝑡ℎ.

Above are the high level instance and witness values known before the protocol starts and don’t
include instance and witness created during protocol execution like the various blindings and 𝑇
values.

4.1.1.1 Prover

1. Prover first wants to prove knowledge of 𝑏𝑎𝑙0, 𝑐𝑛𝑡, 𝜌, 𝜌𝑖, 𝑠𝑗 in the relation 𝑏𝑎𝑙0.𝐺1+𝑐𝑛𝑡.𝐺2+
𝜌.𝐺4 + 𝑠𝑗.𝐺6 = 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 − 𝐴𝐾 − 𝑎𝑡.𝐺3 − 𝑁 − 𝑖𝑑.𝐺7. This is just relation 1 from above
rearranged where values on RHS are public except 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑. Now prover cannot reveal
𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑. Point 5 below explains how.

2. Similarly, taking relation 2 from above, prover wants to prove knowledge of
𝑏𝑎𝑙0, 𝑐, 𝜌, 𝜌𝑖+1, 𝑠2.𝑗 in 𝑏𝑎𝑙0.𝐺1 + 𝑐𝑛𝑡.𝐺2 + 𝜌.𝐺4 + 𝜌𝑖+1.𝐺5 + 𝑠2.𝑗.𝐺6 = 𝐷 where
𝐷 = 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 − 𝑣.𝐺1 − 𝐴𝐾 − 𝑎𝑡.𝐺3 − 𝑖𝑑.𝐺7.

3. Prover creates nullifier 𝑁 = 𝜌𝑖.𝐺5

4. Prover gets the path of the leaf 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 as 𝑃𝑎𝑡ℎ, an array of nodes (curve points), and
randomizes it, i.e all nodes in the path have a blinding added to them like 𝑏𝑖 ∗𝐻0 or 𝑏𝑖 ∗𝐻0.

DART Specification 18

This will result in the leaf 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 being transformed into 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
= 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑+𝑏0.𝐻0 and

𝑃𝑎𝑡ℎ transforms into 𝑃𝑎𝑡ℎ𝑟. Prover enforces the constraints for curve tree membership
using 𝑃𝑎𝑡ℎ, 𝑃 𝑎𝑡ℎ𝑟, 𝑏𝑖

5. Since prover knows the opening of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 and 𝑏0, it can prove the knowledge of opening
of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

as well. So relation 1 can be transformed as

𝑏𝑎𝑙0.𝐺1 + 𝑐𝑛𝑡.𝐺2 + 𝜌.𝐺4 + 𝜌𝑖.𝐺5 + 𝑠𝑗.𝐺6 + 𝑏0.𝐻0 = 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
− 𝐴𝐾 − 𝑎𝑡.𝐺3 − 𝑁 − 𝑖𝑑.𝐺7

where the RHS is public. Now it starts proving the knowledge of these.

6. Prover picks random 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑐𝑛𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
, 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

, 𝜌𝑖+1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
, 𝑠𝑗

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑠2.𝑗
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

∈
ℤ𝑝 and creates:

𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
= 𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺1+𝑐𝑛𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺2+𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺4+𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐺5+𝑠𝑗

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺6+𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐻0, ∈ 𝔾𝑝

𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
= 𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺1+𝑐𝑛𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺2+𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺4+𝜌𝑖+1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐺5+𝑠2.𝑗

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺6, ∈ 𝔾𝑝

Same blinding 𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
is used for both old and new balance since the change in balance

is public and can thus be used in verification check accordingly.

7. For the correctness of nullifier and knowledge of secret key, prover creates 𝑇𝑛𝑢𝑙𝑙 =
𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺5, ∈ 𝔾𝑝 𝑇𝑝𝑘 = 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺𝐴𝑓𝑓 , ∈ 𝔾𝑝

8. For enforcing, 𝜌𝑖+1 = 𝜌.𝜌𝑖, 𝑠2.𝑗 = 𝑠𝑗.𝑠𝑗, prover setups the constraints in Bulletproof as
both of these are just multiplications. Prover uses Sigma protocol (Chaum Pedersen) to
prove equality of committed values in Bulletproof’s commitment (corresponding to its
witnesses) and in 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑, and, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤. Let 𝐶𝐵𝑃𝜌,𝑠

be the commitment to these values:

𝐶𝐵𝑃𝜌,𝑠
= 𝑏′.𝐻0 + 𝜌.𝐻1 + 𝜌𝑖.𝐻2 + 𝜌𝑖+1.𝐻3 + 𝑠𝑗.𝐻4 + 𝑠2.𝑗.𝐻5, ∈ 𝔾𝑝

Here 𝑏′ is the blinding to the commitment added by Bulletproof.

9. Prover proves knowledge of above committed values and equality of these with other
commitments as: Pick random 𝑟𝐵𝑃𝜌,𝑠

∈ ℤ𝑝 and create

𝑇𝐵𝑃𝜌,𝑠
= 𝑟𝐵𝑃𝜌,𝑠

.𝐻0+𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻1+𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐻2+𝜌𝑖+1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐻3+𝑠𝑗
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻4+𝑠2.𝑗

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻5, ∈ 𝔾𝑝

10. Prover hashes the following to create challenge 𝑐 as:

𝑐 = 𝐻𝑎𝑠ℎ(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝐴𝐾, 𝑎𝑡, 𝑁, 𝑖𝑑, 𝑣, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐶𝐵𝑃𝜌,𝑠

, 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤

, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝐵𝑃𝜌,𝑠
, 𝑇𝑝𝑘)

11. Prover now creates responses for sigma protocol for 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
= [𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑏𝑎𝑙0.𝑐, 𝑐𝑛𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑐𝑛𝑡.𝑐, 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌.𝑐, 𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝜌𝑖.𝑐, 𝑠𝑗𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑠𝑗.𝑐, 𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝑏0.𝑐]

12. Responses for sigma protocol for 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
= [⊥, ⊥, ⊥, 𝜌𝑖+1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝜌𝑖+1.𝑐, 𝑠2.𝑗𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝑠2.𝑗.𝑐]

The symbol ⊥ indicates that no response is created for that witness since a response has
been created for the same witness above. Because responses for 𝑏𝑎𝑙1, 𝑐𝑛𝑡 and 𝜌 are already
created in 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

.

DART Specification 19

13. The response for nullifier secret key 𝜌𝑖 is already created in 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
. Response for

witness 𝑠𝑘 𝑅𝑒𝑠𝑝𝑝𝑘 = 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠𝑘.𝑐
14. For relation 𝐶𝐵𝑃𝜌,𝑠

, only the response for witnesses 𝑏′ needs to be created as the responses
of other witnesses are already created in 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

and 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
. 𝑅𝑒𝑠𝑝𝑏′ = 𝑟𝐵𝑃𝜌,𝑠

+
𝑏′.𝑐

15. The proof is

(𝐶𝐵𝑃𝜌,𝑠
, 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝑃𝑎𝑡ℎ𝑟, 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤

, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝐵𝑃𝜌,𝑠
, 𝑇𝑝𝑘, 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
, 𝑅𝑒𝑠𝑝𝑝𝑘, 𝑅𝑒𝑠𝑝𝑏′)

4.1.1.2 Verifier

1. Verifier hashes the following to create challenge 𝑐 as:

𝑐 = 𝐻𝑎𝑠ℎ(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝐴𝐾, 𝑎𝑡, 𝑁, 𝑖𝑑, 𝑣, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐶𝐵𝑃𝜌,𝑠

, 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤

, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝐵𝑃𝜌,𝑠
, 𝑇𝑝𝑘)

2. Verifier enforces the Bulletproof constraints for the 2 multiplications: 𝜌𝑖+1 = 𝜌.𝜌𝑖 and
𝑠2.𝑗 = 𝑠𝑗.𝑠𝑗.

3. Verifier enforces the Bulletproof constraints for curve tree membership to verify that 𝑃𝑎𝑡ℎ𝑟
leads to 𝑅𝑜𝑜𝑡.

4. Verifies correctness of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
by checking:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[0].𝐺1+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[1].𝐺2+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[2].𝐺4+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[3].𝐺5+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[4].𝐺6+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[5].𝐻0
?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

+𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
−𝐴𝐾−𝑎𝑡.𝐺3−𝑁−𝑖𝑑.𝐺7.𝑐

⟹ (𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝑏𝑎𝑙0.𝑐).𝐺1+(𝑐𝑛𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑐𝑛𝑡.𝑐).𝐺2+(𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝜌.𝑐).𝐺4+(𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝜌𝑖.𝑐).𝐺5+(𝑠𝑗
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠𝑗.𝑐).𝐺6+(𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝑏0.𝑐).𝐻0
?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

+(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
−𝐴𝐾−𝑎𝑡.𝐺3−𝑁−𝑖𝑑.𝐺7).𝑐

5. Verifies correctness of 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 by checking:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[0].𝐺1+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[1].𝐺2+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[2].𝐺4+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤

[3].𝐺5+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
[4].𝐺6

?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
+(𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤−𝑣.𝐺1−𝐴𝐾−𝑎𝑡.𝐺3−𝑖𝑑.𝐺7).𝑐

⟹ (𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝑏𝑎𝑙0.𝑐).𝐺1+(𝑐𝑛𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑐𝑛𝑡.𝑐).𝐺2+(𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝜌.𝑐).𝐺4+(𝜌𝑖+1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝜌𝑖+1.𝑐).𝐺5+(𝑠2.𝑗
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠2.𝑗.𝑐).𝐺6

?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
+(𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤−𝑣.𝐺1−𝐴𝐾−𝑎𝑡.𝐺3−𝑖𝑑.𝐺7).𝑐

Note that for the 𝑏𝑎𝑙0, 𝑐𝑛𝑡, and 𝜌 witnesses, verifier reuses responses from 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
.

6. Verifies correctness of nullifier by checking:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[3].𝐺5

?= 𝑇𝑛𝑢𝑙𝑙 + 𝑁.𝑐

⟹ (𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝜌𝑖.𝑐).𝐺5

?= 𝑇𝑛𝑢𝑙𝑙 + 𝑁.𝑐

7. Verifies knowledge of secret key by checking:

𝑅𝑒𝑠𝑝𝑝𝑘.𝐺𝐴𝑓𝑓
?= 𝑇𝑝𝑘 + 𝐴𝐾.𝑐

⟹ (𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠𝑘.𝑐).𝐺𝐴𝑓𝑓
?= 𝑇𝑝𝑘 + 𝐴𝐾.𝑐

8. Verifier checks response for 𝐶𝐵𝑃𝜌,𝑠
as:

𝑅𝑒𝑠𝑝𝑏′ .𝐻0+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[2].𝐻1+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[3].𝐻2+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
[3].𝐻3+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[4].𝐻4+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
[4].𝐻5

?= 𝑇𝐵𝑃𝜌,𝑠
+𝐶𝐵𝑃𝜌,𝑠

.𝑐

⟹ (𝑟𝐵𝑃𝜌,𝑠
+𝑏′.𝑐).𝐻0+(𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝜌.𝑐).𝐻1+(𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝜌𝑖.𝑐).𝐻2+(𝜌𝑖+1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝜌𝑖+1.𝑐).𝐻3+(𝑠𝑗

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠𝑗.𝑐).𝐻4+(𝑠2.𝑗
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠2.𝑗.𝑐).𝐻5

?= 𝑇𝐵𝑃𝜌,𝑠
+𝐶𝐵𝑃𝜌,𝑠

.𝑐

9. Verifier finally checks the Bulletproofs proof for all constraints i.e. curve tree membership
and multiplications

DART Specification 20

5 Settlement
5.1 Settlement
A settlement can have 1 or more Legs as each Leg represents one asset transfer. Say Alice
wants to send 10 units of asset id 𝑎𝑡 to Bob, then such a settlement will have 1 leg with Alice
as sender and Bob as receiver. If Alice wants to swap asset 10 units of 𝑎𝑡 with Bob for 20
units of 𝑎𝑡′, then such a settlement will have 2 legs with Alice acting as sender in one leg and
recevier in other and vice-versa for Bob Settlements might be created by sender, receiver or a
third party. To keep the amount, and identities of parties confidential, the settlement creator
encrypts these details including asset-id so that the chain does not even learn which asset is
being traded. However, the chain knows how many legs the settlement has. The encryption is
done for all parties to that leg which include sender, receiver and all auditors and mediators for
that asset. An assumption here is that the verifier does not need to ensure that the encryption
is correctly done for the sender, receiver or mediator since they need to respond to a settlement
for it to succeed so if the decryption can’t be done, it will eventually fail. This isn’t true for
auditors and they just need to observe and can’t influence the settlement anyway. Following
describes the creation of a leg, its encryption, decryption and the proof that the leg is correctly
generated.

5.1.1 Leg

A leg has:

1. 𝐴𝐾𝑠 = 𝑠𝑘𝑠.𝐺𝐴𝑓𝑓 - Affirmation key of sender
2. 𝐴𝐾𝑟 = 𝑠𝑘𝑟.𝐺𝐴𝑓𝑓 - Affirmation key of receiver
3. 𝐸𝐾𝑠 = 𝑒𝑘𝑠.𝐺𝐸𝑛𝑐 - Encryption key of sender
4. 𝐸𝐾𝑟 = 𝑒𝑘𝑟.𝐺𝐸𝑛𝑐 - Encryption key of receiver
5. 𝑎𝑡 - asset-id being transferred
6. 𝑣 - Amount of units being transferred
7. 𝑘𝑒𝑦𝑠 - A list of keys of asset’s auditors and mediators along with their role specified such

that 𝑘𝑒𝑦𝑠𝑖 = (𝑟𝑜𝑙𝑒, 𝐸𝐾𝑖) where 𝐸𝐾𝑖 = 𝑠𝑘𝑖.𝐺𝐸𝑛𝑐 is the key of the i-th auditor/mediator

5.1.1.1 Encryption The setllement creator wants to ensure that the same leg encyption is
given to all parties and thus uses twisted Elgamal.

1. Since 4 items need to be encrypted, picks 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ ℤ𝑝 and creates: 𝐶𝑇𝑠 = 𝑟1.𝐺𝐸𝑛𝑐 +
𝐴𝐾𝑠 𝐶𝑇𝑟 = 𝑟2.𝐺𝐸𝑛𝑐 + 𝐴𝐾𝑟 𝐶𝑇𝑣 = 𝑟3.𝐺𝐸𝑛𝑐 + 𝑣.𝐻 𝐶𝑇𝑎𝑡 = 𝑟4.𝐺𝐸𝑛𝑐 + 𝑎𝑡.𝐻

2. Above can be used by the sender/reciver to decrypt but they also need to prove (during
affirmations) that 𝐶𝑇𝑠(or 𝐶𝑇𝑟) has 𝐴𝐾𝑠(or 𝐴𝐾𝑟) and they know its secret key. To make
it efficient, the creator picks 𝑟𝑖 such that both sender and receiver can recover them. It
does that using Diffie-Hellman as: Pick a random 𝑦 ∈ ℤ𝑝 and create a shared secret
𝑠𝑠 = 𝑦.𝐺𝐸𝑛𝑐 Use hash-to-field to get (𝑟1, 𝑟2, 𝑟3, 𝑟4) = ℎ2𝑓(𝑠𝑠) Now create 𝐸𝑝ℎ𝑠 = 𝑦.𝐸𝐾𝑠
and 𝐸𝑝ℎ𝑟 = 𝑦.𝐸𝐾𝑟

3. Now sender (or receiver) can recover 𝑠𝑠 as 𝑠𝑠 = 𝑒𝑘−1
𝑠 .𝐸𝑝ℎ𝑠 (or 𝑠𝑠 = 𝑒𝑘−1

𝑟 .𝐸𝑝ℎ𝑟) and then
(𝑟1, 𝑟2, 𝑟3, 𝑟4) = ℎ2𝑓(𝑠𝑠)

4. For each 𝑘𝑒𝑦𝑠𝑖, create 𝐸𝑝ℎ𝑘𝑖
= [𝑟1.𝐸𝐾𝑖, 𝑟2.𝐸𝐾𝑖, 𝑟3.𝐸𝐾𝑖, 𝑟4.𝐸𝐾𝑖]

The leg encryption is

(𝐶𝑇𝑠, 𝐶𝑇𝑟, 𝐶𝑇𝑣, 𝐶𝑇𝑎𝑡, 𝐸𝑝ℎ𝑠, 𝐸𝑝ℎ𝑟, [𝐸𝑝ℎ𝑘0
, 𝐸𝑝ℎ𝑘1

, ...])

5.1.1.2 Decryption If a sender/receiver knows which leg corresponds to his key (from off-
chain communication), it first recovers 𝑟𝑖 as described above. 1. Then it decrypts 𝐶𝑇𝑠, 𝐶𝑇𝑟

DART Specification 21

to get its and ensure that its the correct key 𝐴𝐾𝑠 = 𝐶𝑇𝑠 − 𝑟1.𝐺𝐸𝑛𝑐 𝐴𝐾𝑟 = 𝐶𝑇𝑟 − 𝑟2.𝐺𝐸𝑛𝑐 2.
To decrypt amount and asset-id, does the Elgamal decryption followed by solving discrete log
𝑣.𝐻 = 𝐶𝑇𝑣 − 𝑟3.𝐺𝐸𝑛𝑐 𝑎𝑡.𝐻 = 𝐶𝑇𝑎𝑡 − 𝑟4.𝐺𝐸𝑛𝑐

Since 𝑣 and 𝑎𝑡 are small, 48 and 32 bits respectively, they can be recovered in reasonable
ammount of time solving discrete log.

if the sender/receiver didn’t know which legs corresponds to him, then he has to scan the chain
and repeat step 1 for each leg to check if its the sender or receiver. Note that the sender/receiver’s
affirmation secret key is not needed to decrypt so they can delegate the descryption task to
another service without that service being able to spend their assets but it can only track them.

For auditors/mediators, who dont have 𝑟𝑖 but only their key, they proceed by taking inverse of
secret key as 𝑠𝑘−1 and:

1. 𝐴𝐾𝑠 = 𝐶𝑇𝑠 − 𝑠𝑘−1.𝐸𝑝ℎ𝑘𝑖
[0] = 𝐶𝑇𝑠 − 𝑟1.𝐺𝐸𝑛𝑐

2. 𝐴𝐾𝑟 = 𝐶𝑇𝑠 − 𝑠𝑘−1.𝐸𝑝ℎ𝑘𝑖
[1] = 𝐶𝑇𝑟 − 𝑟2.𝐺𝐸𝑛𝑐

3. 𝑣.𝐻 = 𝐶𝑇𝑣 − 𝑠𝑘−1.𝐸𝑝ℎ𝑘𝑖
[2] = 𝐶𝑇𝑣 − 𝑟3.𝐺𝐸𝑛𝑐

4. 𝑎𝑡.𝐻 = 𝐶𝑇𝑎𝑡 − 𝑠𝑘−1.𝐸𝑝ℎ𝑘𝑖
[3] = 𝐶𝑇𝑎𝑡 − 𝑟4.𝐺𝐸𝑛𝑐

𝑣 and 𝑎𝑡 are recovered by solving discrete log.

5.1.2 Leg creation proof

The proof for leg creation needs to hide: - The sender and reciever’s identity (or public key)
- The amount being transferred - The asset being transacted. This is the most complicated
part as the it needs to prove that all the transaction details are being encrypted for the asset’s
auditors and mediators without revealing the asset or identity of auditors and mediators.

Recall from the “System model” model section that an asset’s data, i.e. its id and public keys
of all its auditors and mediators are stored in a leaf of the asset curve tree. It is Pedersen
commitment to the “asset-id” and x-coordinates of the public keys of auditors and mediators
as

𝐿𝑒𝑎𝑓𝑎𝑠𝑠𝑒𝑡_𝑖𝑑 = (𝐴𝑇 .𝑥).𝐺 + (𝐸𝐾1.𝑥).𝐺1 + (𝐸𝐾2.𝑥).𝐺2 + ... + (𝐸𝐾𝑛.𝑥).𝐺𝑛, 𝐿𝑒𝑎𝑓𝑎𝑠𝑠𝑒𝑡_𝑖𝑑 ∈ 𝔾𝑞

But there is a slight difference in the implementation where we include the role of the 𝐸𝐾𝑖 as
well so the leaf actually looks like this

𝐿𝑒𝑎𝑓𝑎𝑠𝑠𝑒𝑡_𝑖𝑑 = (𝐴𝑇 .𝑥).𝐺+((𝑟𝑜𝑙𝑒1.𝐽+𝐸𝐾1).𝑥).𝐺1+((𝑟𝑜𝑙𝑒2.𝐽+𝐸𝐾2).𝑥).𝐺2+...+((𝑟𝑜𝑙𝑒𝑛.𝐽+𝐸𝐾𝑛).𝑥).𝐺𝑛, 𝐿𝑒𝑎𝑓𝑎𝑠𝑠𝑒𝑡_𝑖𝑑 ∈ 𝔾𝑞

Here - (𝐴𝑇 .𝑥) refers to taking the x-coordinate of point 𝐴𝑇 = 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑.𝐽 , 𝐴 ∈ 𝔾𝑝 - (𝑟𝑜𝑙𝑒𝑖.𝐽 +
𝐸𝐾𝑖.𝑥) refers to taking the x-coordinate of 𝑟𝑜𝑙𝑒𝑖.𝐽 + 𝐸𝐾𝑖 where 𝑟𝑜𝑙𝑒𝑖 and 𝐸𝐾𝑖 are role and
public key of the 𝑖-th auditor/mediator. If role is auditor, 𝑟𝑜𝑙𝑒𝑖 = 1 else 0. The x-coordinates
are taken using the same approach as done by curve tree paper: adding a public element Δ to
𝐸𝐾𝑖 and taking the x-coordinate of the result

Now this pushes 𝐿𝑒𝑎𝑓𝑎𝑠𝑠𝑒𝑡_𝑖𝑑 in a different group 𝔾𝑞 (Vesta curve) whereas all public keys are
in 𝔾𝑝 (Pallas curve). We use a similar technique used by Curve tree paper. The key idea is that
the asset-id and encryption keys for all auditors and mediators is committed in a single Pedersen
commitment where the x-coordinate of the item “represents” the item and then we randomize
each item and can treat as a group element which can be revealed. Since the 𝑎𝑠𝑠𝑒𝑡_𝑖𝑑 ∈ ℤ𝑝,
we shift it to 𝔾𝑝 by multiplying it by a public 𝐽 ∈ 𝔾𝑝. Following describes the general protocol

DART Specification 22

Pedersen Commitment to Curve Points Commits to elliptic curve points by committing
to their x-coordinate the same way curve trees do. Then the knowledge of those committed
points can be proven along with generating a re-randomized version of each point. Given points
𝑃𝑖 ∈ 𝔾𝑝 as

𝐴 = [𝑃0, 𝑃1, ..., 𝑃𝑛]

Commit to 𝐴 in a Pedersen commitment of x-coordinate of each 𝑃𝑖, i.e.

𝑃𝑖.𝑥 ∈ 𝐶 = 𝑃𝑒𝑑𝐶𝑜𝑚(𝑃0.𝑥, 𝑃1.𝑥, ..., 𝑃𝑛.𝑥) = ∑
𝐺𝑖∗𝑃𝑖.𝑥

where 𝐶 ∈ 𝔾𝑞 and 𝑃𝑖.𝑥 ∈ ℤ𝑞 where 𝔾𝑝, 𝔾𝑞 are on 2 curves which form a 2-cycle (base field of
one equals scalar field of other).

1. Prover randomizes each 𝑃𝑖 to get

𝐴𝑟 = [𝑃𝑟0, 𝑃𝑟1, ..., 𝑃𝑟𝑛]

where

𝐴𝑟[𝑖] = 𝑃𝑟𝑖
= 𝑃𝑖 + 𝑏𝑙𝑖 ∗ 𝐵

𝐵 ∈ 𝔾𝑝, 𝑏𝑙𝑖
$← ℤ𝑝

.

2. Prover proves ∀𝑖, 𝑃𝑖 ∈ 𝔾𝑝, i.e. 𝑃𝑖.𝑥, 𝑃𝑖.𝑦 are x and y coordinates of a point which lies in
group 𝔾𝑝 and 𝑃𝑖.𝑥, 𝑃𝑖.𝑦 ∈ ℤ𝑞.

3. Prover proves ∀𝑖, 𝐴𝑟[𝑖] = 𝐴[𝑖] + 𝑏𝑙𝑖 ∗ 𝐵 = 𝑃𝑖 + 𝑏𝑙𝑖 ∗ 𝐵
The implementation adds a public element Δ to each 𝑃𝑖 as mentioned in the curve tree paper.

In our usage of the above protocol, 𝐴 corresponds to [𝐴𝑇 , 𝑟𝑜𝑙𝑒1.𝐽 + 𝐸𝐾1, 𝑟𝑜𝑙𝑒2.𝐽 +
𝐸𝐾2, .., 𝑟𝑜𝑙𝑒𝑛.𝐽 + 𝐸𝐾𝑛]
A prover (settlement creator) wants to prove following relations when creating a leg with amount
𝑣:

1. 𝐶𝑇𝑣, 𝐶𝑇𝑎𝑡 correctly encrypt the amount and asset-id
2. 𝐸𝑝ℎ𝑘𝑖

= [𝑟1.𝐸𝐾𝑖, 𝑟2.𝐸𝐾𝑖, 𝑟3.𝐸𝐾𝑖, 𝑟4.𝐸𝐾𝑖] where 𝐸𝐾𝑖 is the key of the 𝑖-th auditor and
mediator. This also involves a curve tree membership proof as the creator needs to prove
that the asset-id its proving about is a valid one (in the tree).

3. 𝑣 <= 𝑀𝐴𝑋𝐵𝐴𝐿𝐴𝑁𝐶𝐸
Instance: 𝐶𝑇𝑣, 𝐶𝑇𝑎𝑡, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐺𝐸𝑛𝑐, 𝐺𝑖, 𝐻, 𝐻𝑖, 𝐽 , 𝐺, 𝐺𝑖, 𝐻, 𝐻𝑖 ∈ 𝔾𝑞

Witness: 𝑣, 𝑎𝑡, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝐸𝐾𝑖, 𝑃𝑎𝑡ℎ.

Above are the high level instance and witness values known before the protocol starts and don’t
include instance and witness created during protocol execution like the various blindings and 𝑇
values.

DART Specification 23

5.1.2.1 Prover

1. Prover creates list of points for asset-id and 𝑘𝑒𝑦𝑠 as 𝐴 = [𝐴𝑇 , 𝑟𝑜𝑙𝑒1.𝐽 + 𝐸𝐾1, 𝑟𝑜𝑙𝑒2.𝐽 +
𝐸𝐾2, .., 𝑟𝑜𝑙𝑒𝑛.𝐽 + 𝐸𝐾𝑛]

2. Create blindings 𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔𝑠 = [𝑏𝑙0, 𝑏𝑙1, 𝑏𝑙2, ...𝑏𝑙𝑛] and randomize 𝐴 as 𝐴𝑟 = [𝐴𝑇𝑟, 𝐸1, 𝐸2, ..., 𝐸𝑛]
where 𝐴𝑇𝑟 = 𝐴𝑇 + 𝑏𝑙0.𝐻0 = 𝑎𝑡.𝐽 + 𝑏𝑙0.𝐻0 and 𝐸𝑖 = 𝑟𝑜𝑙𝑒𝑖.𝐽 + 𝐸𝐾𝑖 + 𝑏𝑙𝑖.𝐻0. 𝐴𝑟 will be
shared with the verifier since all its items are randomized.

3. Take coordinates of all points in 𝐴 as 𝑥 = [(𝐴𝑇 + Δ).𝑥, (𝐸1 + Δ).𝑥, (𝐸2 + Δ).𝑥, ..., (𝐸𝑛 +
Δ).𝑥] and 𝑦 = [(𝐴𝑇 + Δ).𝑦, (𝐸1 + Δ).𝑦, (𝐸2 + Δ).𝑦, ..., (𝐸𝑛 + Δ).𝑦]

4. Enforces constraints that for each 𝑖:
• (𝑥𝑖, 𝑦𝑖) is a valid curve point
• (𝑥𝑖, 𝑦𝑖) + 𝑏𝑙𝑖.𝐻0 = (𝑥𝑟𝑖

, 𝑦𝑟𝑖
) + Δ where (𝑥𝑟𝑖

, 𝑦𝑟𝑖
) = 𝐴𝑟[𝑖]. The RHS is completely public

but the LHS involves a fixed point (𝐻0) scalar multiplication - 𝑏𝑙𝑖.𝐻0 and a curve point
addition - (𝑥𝑖, 𝑦𝑖) + 𝑏𝑙𝑖.𝐻0.

5. Now that there is a public 𝐸𝑖 corresponding to each public key 𝐸𝐾𝑖 as 𝐸𝑖 = 𝑟𝑜𝑙𝑒𝑖.𝐽 +
𝐸𝐾𝑖 + 𝑏𝑙𝑖.𝐻0, we can state 𝐸𝐾𝑖 in terms of 𝐸𝑖 as 𝐸𝑖 − 𝑟𝑜𝑙𝑒𝑖.𝐽 − 𝑏𝑙𝑖.𝐻0 = 𝐸𝐾𝑖 since the
LHS is a “blinded version” of 𝐸𝐾𝑖 and is different for the same 𝐸𝐾𝑖 in different proofs
(as long as fresh 𝑏𝑙𝑖 is chosen). Now use it for proving relations about 𝐸𝑝ℎ𝑘𝑖

as

𝐸𝑝ℎ𝑘𝑖
= [𝑟1.(𝐸𝑖−𝑟𝑜𝑙𝑒𝑖.𝐽−𝑏𝑙𝑖.𝐻0), 𝑟2.(𝐸𝑖−𝑟𝑜𝑙𝑒𝑖.𝐽−𝑏𝑙𝑖.𝐻0), 𝑟3.(𝐸𝑖−𝑟𝑜𝑙𝑒𝑖.𝐽−𝑏𝑙𝑖.𝐻0), 𝑟4.(𝐸𝑖−𝑟𝑜𝑙𝑒𝑖.𝐽−𝑏𝑙𝑖.𝐻0)]

which is doable using folklore techniques as all group elements, 𝐸𝑖, 𝐻0, 𝐽 are public. Infact,
𝑟𝑜𝑙𝑒𝑖.𝐽 is public since 𝑟𝑜𝑙𝑒𝑖 is public.

6. Now prover has to use Sigma protocol for 2 witnesses for each item of 𝐸𝑝ℎ𝑘𝑖
which is

expensive so we express
• 𝐸𝑝ℎ𝑘𝑖

[0] in the 2 witness relation as 𝐸𝑝ℎ𝑘𝑖
[0] = 𝑟1.(𝐸𝑖 − 𝑟𝑜𝑙𝑒𝑖.𝐽) + 𝑟1.𝑏𝑙1.(−𝐻0)

• 𝐸𝑝ℎ𝑘𝑖
[1] = (𝑟2.𝑟−1

1).𝐸𝑝ℎ𝑘𝑖
[0] since 𝑟−1

1 .𝐸𝑝ℎ𝑘𝑖
[0] = 𝐸𝑖 − 𝑟𝑜𝑙𝑒𝑖.𝐽 − 𝑏𝑙𝑖.𝐻0 = 𝐸𝐾𝑖

• Similarly 𝐸𝑝ℎ𝑘𝑖
[2] = (𝑟3.𝑟−1

1).𝐸𝑝ℎ𝑘𝑖
[0] and

• 𝐸𝑝ℎ𝑘𝑖
[3] = (𝑟4.𝑟−1

1).𝐸𝑝ℎ𝑘𝑖
[0]

7. Another trick is that prover doesn’t need to prove that the scalars 𝑟2.𝑟−1
1 , 𝑟3.𝑟−1

1 , 𝑟4.𝑟−1
1

are well formed in the sigma protocols. It can enforce that in Bulletproof using multi-
plication relations like 𝑟1.𝑟2.𝑟−1

1 = 𝑟2 and so on. In the sigma protocol, prover treats
𝑟2.𝑟−1

1 , 𝑟3.𝑟−1
1 , 𝑟4.𝑟−1

1 as 𝛼, 𝛽, 𝛾.
8. For proving 𝐴𝑇𝑟 = 𝑎𝑡.𝐽 + 𝑏𝑙0.𝐻0, prover picks random 𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑏𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

∈ ℤ𝑝 and
creates: 𝑇𝐴𝑇𝑟

= 𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐽 + 𝑏𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐻0, ∈ 𝔾𝑝

9. For the unified Bulletproof commitment, prover creates:

𝐶𝐵𝑃 = 𝑏.𝐻0 + 𝑟1.𝐻1 + 𝑟2.𝐻2 + 𝑟3.𝐻3 + 𝑟4.𝐻4 + 𝛼.𝐻5 + 𝛽.𝐻6 + 𝛾.𝐻7 + 𝑣.𝐻8, 𝐶𝐵𝑃 ∈ 𝔾𝑝

where 𝛼 = 𝑟2.𝑟−1
1 , 𝛽 = 𝑟3.𝑟−1

1 , 𝛾 = 𝑟4.𝑟−1
1 .

10. Bulletproof constraints enforce:
• 𝑟1.𝛼 = 𝑟2
• 𝑟1.𝛽 = 𝑟3
• 𝑟1.𝛾 = 𝑟4
• 𝑣 <= 𝑀𝐴𝑋𝐵𝐴𝐿𝐴𝑁𝐶𝐸 (range proof)

11. For each auditor/mediator 𝑖, prover proves 𝐸𝑝ℎ𝑘𝑖
[0] = 𝑟1.(𝐸𝑖 − 𝑟𝑜𝑙𝑒𝑖.𝐽) + 𝑟1.𝑏𝑙𝑖.(−𝐻0).

Prover picks random 𝑟1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
, 𝑏𝑙𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

∈ ℤ𝑝 and creates: 𝑇𝐸𝑝ℎ𝑘𝑖 [0] = 𝑟1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.(𝐸𝑖 −

𝑟𝑜𝑙𝑒𝑖.𝐽) + 𝑏𝑙𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.(−𝐻0), ∈ 𝔾𝑝

12. For 𝐸𝑝ℎ𝑘𝑖
[1], prover picks random 𝛼𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 ∈ ℤ𝑝 and creates: 𝑇𝐸𝑝ℎ𝑘𝑖 [1] =

𝛼𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐸𝑝ℎ𝑘𝑖
[0], ∈ 𝔾𝑝

13. For 𝐸𝑝ℎ𝑘𝑖
[2], prover picks random 𝛽𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 ∈ ℤ𝑝 and creates: 𝑇𝐸𝑝ℎ𝑘𝑖 [2] = 𝛽𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐸𝑝ℎ𝑘𝑖

[0], ∈
𝔾𝑝

DART Specification 24

14. For 𝐸𝑝ℎ𝑘𝑖
[3], prover picks random 𝛾𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 ∈ ℤ𝑝 and creates: 𝑇𝐸𝑝ℎ𝑘𝑖 [3] = 𝛾𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐸𝑝ℎ𝑘𝑖

[0], ∈
𝔾𝑝

15. For the Bulletproof commitment, prover picks random 𝑟𝐵𝑃 ∈ ℤ𝑝 and creates:

𝑇𝐵𝑃 = 𝑟𝐵𝑃 .𝐻0+𝑟1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐻1+𝑟2𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐻2+𝑟3𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐻3+𝑟4𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐻4+𝛼𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻5+𝛽𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻6+𝛾𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻7+𝑣𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻8, ∈ 𝔾𝑝

16. For proving 𝐶𝑇𝑣 = 𝑟3.𝐺𝐸𝑛𝑐 + 𝑣.𝐻 and 𝐶𝑇𝑎𝑡 = 𝑟4.𝐺𝐸𝑛𝑐 + 𝑎𝑡.𝐻, prover picks ran-
dom 𝑟3𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

, 𝑣𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑟4𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
, 𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 ∈ ℤ𝑝 and creates: 𝑇𝑣 = 𝑟3𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺𝐸𝑛𝑐 +
𝑣𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻, ∈ 𝔾𝑝 𝑇𝑎𝑡 = 𝑟4𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺𝐸𝑛𝑐 + 𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻, ∈ 𝔾𝑝
17. Prover hashes the following to create challenge 𝑐 as:

𝑐 = 𝐻𝑎𝑠ℎ(𝐴𝑟, 𝐿𝑒𝑎𝑓𝑎𝑠𝑠𝑒𝑡_𝑖𝑑𝑟
, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐶𝑇𝑣, 𝐶𝑇𝑎𝑡, 𝐶𝐵𝑃 , 𝑇𝐴𝑇𝑟

, 𝑇𝐸𝑝ℎ𝑘𝑖 [0], 𝑇𝐸𝑝ℎ𝑘𝑖 [1], 𝑇𝐸𝑝ℎ𝑘𝑖 [2], 𝑇𝐸𝑝ℎ𝑘𝑖 [3], 𝑇𝐵𝑃 , 𝑇𝑣, 𝑇𝑎𝑡)

18. Prover creates responses for 𝑅𝑒𝑠𝑝𝐴𝑇𝑟
: 𝑅𝑒𝑠𝑝𝐴𝑇𝑟

= [𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑎𝑡.𝑐, 𝑏𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝑏𝑙0.𝑐]

19. For each 𝑖, prover creates responses for 𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [0]: 𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [0] = [𝑟1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝑟1.𝑐, 𝑏𝑙𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑟1.𝑏𝑙𝑖.𝑐]
20. For 𝐸𝑝ℎ𝑘𝑖

[1], prover creates response: 𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [1] = 𝛼𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝛼.𝑐
21. For 𝐸𝑝ℎ𝑘𝑖

[2], prover creates response: 𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [2] = 𝛽𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝛽.𝑐
22. For 𝐸𝑝ℎ𝑘𝑖

[3], prover creates response: 𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [3] = 𝛾𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝛾.𝑐
23. For 𝐶𝑇𝑣, prover creates responses: 𝑅𝑒𝑠𝑝𝑣 = [𝑟3𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑟3.𝑐, 𝑣𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑣.𝑐] 𝑅𝑒𝑠𝑝𝑎𝑡 =
[𝑟4𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑟4.𝑐, ⊥]
24. For relation 𝐶𝐵𝑃 , prover creates response for blinding 𝑏: 𝑅𝑒𝑠𝑝𝐵𝑃 = [𝑟𝐵𝑃 + 𝑏.𝑐, ⊥, 𝑟2𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑟2.𝑐, ⊥, ⊥, ⊥, ⊥, ⊥, ⊥]
25. The proof is

(𝐶𝐵𝑃 , 𝐴𝑟, 𝐿𝑒𝑎𝑓𝑎𝑠𝑠𝑒𝑡_𝑖𝑑𝑟
, 𝑃𝑎𝑡ℎ𝑟, 𝐶𝑇𝑣, 𝐶𝑇𝑎𝑡, 𝑇𝐴𝑇𝑟

, 𝑇𝐸𝑝ℎ𝑘𝑖 [0], 𝑇𝐸𝑝ℎ𝑘𝑖 [1], 𝑇𝐸𝑝ℎ𝑘𝑖 [2], 𝑇𝐸𝑝ℎ𝑘𝑖 [3], 𝑇𝐵𝑃 , 𝑇𝑣, 𝑇𝑎𝑡, 𝑅𝑒𝑠𝑝𝑣, 𝑅𝑒𝑠𝑝𝑎𝑡, 𝑅𝑒𝑠𝑝𝐴𝑇𝑟
, 𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [0], 𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [1], 𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [2], 𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [3], 𝑅𝑒𝑠𝑝𝐵𝑃 ,)

5.1.2.2 Verifier

1. Verifier hashes the following to create challenge 𝑐 as:

𝑐 = 𝐻𝑎𝑠ℎ(𝐴𝑟, 𝐿𝑒𝑎𝑓𝑎𝑠𝑠𝑒𝑡_𝑖𝑑𝑟
, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐶𝑇𝑣, 𝐶𝑇𝑎𝑡, 𝐶𝐵𝑃 , 𝑇𝐴𝑇𝑟

, 𝑇𝐸𝑝ℎ𝑘𝑖 [0], 𝑇𝐸𝑝ℎ𝑘𝑖 [1], 𝑇𝐸𝑝ℎ𝑘𝑖 [2], 𝑇𝐸𝑝ℎ𝑘𝑖 [3], 𝑇𝐵𝑃 , 𝑇𝑣, 𝑇𝑎𝑡)

2. Verifier enforces the Bulletproof constraints for curve point validity: for each 𝑖, (𝑥𝑖, 𝑦𝑖)
satisfies the curve equation.

3. Verifier enforces the Bulletproof constraints for randomization consistency: (𝑥𝑖, 𝑦𝑖) +
𝑏𝑙𝑖.𝐻0 = (𝑥𝑟𝑖

, 𝑦𝑟𝑖
) + Δ for all 𝑖.

4. Verifier enforces the Bulletproof constraints for curve tree membership to verify that 𝑃𝑎𝑡ℎ𝑟
leads to 𝑅𝑜𝑜𝑡.

5. Verifier enforces the Bulletproof constraints for the multiplication relations:

• 𝑟1.𝛼 = 𝑟2
• 𝑟1.𝛽 = 𝑟3
• 𝑟1.𝛾 = 𝑟4

6. Verifier enforces the Bulletproof constraint for range proof: 𝑣 <= 𝑀𝐴𝑋𝐵𝐴𝐿𝐴𝑁𝐶𝐸.

7. Verifies correctness of 𝐴𝑇𝑟 by checking: 𝑅𝑒𝑠𝑝𝐴𝑇𝑟
[0].𝐽 + 𝑅𝑒𝑠𝑝𝐴𝑇𝑟

[1].𝐻0
?= 𝑇𝐴𝑇𝑟

+ 𝐴𝑇𝑟.𝑐
⟹ (𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑎𝑡.𝑐).𝐽 + (𝑏𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑏𝑙0.𝑐).𝐻0
?= 𝑇𝐴𝑇𝑟

+ 𝐴𝑇𝑟.𝑐
8. For each 𝑖, verifies correctness of 𝐸𝑝ℎ𝑘𝑖

[0] by checking:

𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [0][0].(𝐸𝑖 − 𝑟𝑜𝑙𝑒𝑖.𝐽) + .𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [0][1].(−𝐻0) ?= 𝑇𝐸𝑝ℎ𝑘𝑖 [0] + 𝐸𝑝ℎ𝑘𝑖
[0].𝑐

⟹ (𝑟1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝑟1.𝑐).(𝐸𝑖 −𝑟𝑜𝑙𝑒𝑖.𝐽)+ (𝑏𝑙𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝑟1.𝑏𝑙𝑖.𝑐).(−𝐻0) ?= 𝑇𝐸𝑝ℎ𝑘𝑖 [0] +𝐸𝑝ℎ𝑘𝑖
[0].𝑐

DART Specification 25

9. For each 𝑖, verifies correctness of 𝐸𝑝ℎ𝑘𝑖
[1] by checking: 𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [1].𝐸𝑝ℎ𝑘𝑖

[0] ?= 𝑇𝐸𝑝ℎ𝑘𝑖 [1]+
𝐸𝑝ℎ𝑘𝑖

[1].𝑐 ⟹ (𝛼𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝛼.𝑐).𝐸𝑝ℎ𝑘𝑖
[0] ?= 𝑇𝐸𝑝ℎ𝑘𝑖 [1] + 𝐸𝑝ℎ𝑘𝑖

[1].𝑐

10. For each 𝑖, verifies correctness of 𝐸𝑝ℎ𝑘𝑖
[2] by checking: 𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [2].𝐸𝑝ℎ𝑘𝑖

[0] ?= 𝑇𝐸𝑝ℎ𝑘𝑖 [2]+
𝐸𝑝ℎ𝑘𝑖

[2].𝑐 ⟹ (𝛽𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝛽.𝑐).𝐸𝑝ℎ𝑘𝑖
[0] ?= 𝑇𝐸𝑝ℎ𝑘𝑖 [2] + 𝐸𝑝ℎ𝑘𝑖

[2].𝑐

11. For each 𝑖, verifies correctness of 𝐸𝑝ℎ𝑘𝑖
[3] by checking: 𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [3].𝐸𝑝ℎ𝑘𝑖

[0] ?= 𝑇𝐸𝑝ℎ𝑘𝑖 [3]+
𝐸𝑝ℎ𝑘𝑖

[3].𝑐 ⟹ (𝛾𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝛾.𝑐).𝐸𝑝ℎ𝑘𝑖
[0] ?= 𝑇𝐸𝑝ℎ𝑘𝑖 [3] + 𝐸𝑝ℎ𝑘𝑖

[3].𝑐
12. Verifier checks response for 𝐶𝐵𝑃 as:

𝑅𝑒𝑠𝑝𝐵𝑃 [0].𝐻0+𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [0][0].𝐻1+𝑅𝑒𝑠𝑝𝐵𝑃 [2].𝐻2+𝑅𝑒𝑠𝑝𝑣[0].𝐻3+𝑅𝑒𝑠𝑝𝑎𝑡[0].𝐻4+𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [1].𝐻5+𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [2].𝐻6+𝑅𝑒𝑠𝑝𝐸𝑝ℎ𝑘𝑖 [3].𝐻7+𝑅𝑒𝑠𝑝𝑣[1].𝐻8
?= 𝑇𝐵𝑃 +𝐶𝐵𝑃 .𝑐

⟹ (𝑟𝐵𝑃 +𝑏.𝑐).𝐻0+(𝑟1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝑟1.𝑐).𝐻1+(𝑟2𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝑟2.𝑐).𝐻2+(𝑟3𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝑟3.𝑐).𝐻3+(𝑟4𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝑟4.𝑐).𝐻4+(𝛼𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝛼.𝑐).𝐻5+(𝛽𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝛽.𝑐).𝐻6+(𝛾𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝛾.𝑐).𝐻7+(𝑣𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑣.𝑐).𝐻8
?= 𝑇𝐵𝑃 +𝐶𝐵𝑃 .𝑐

13. Verifies correctness of 𝐶𝑇𝑣 by checking: 𝑅𝑒𝑠𝑝𝑣[0].𝐺𝐸𝑛𝑐 + 𝑅𝑒𝑠𝑝𝑣[1].𝐻 ?= 𝑇𝑣 + 𝐶𝑇𝑣.𝑐 ⟹
(𝑟3𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑟3.𝑐).𝐺𝐸𝑛𝑐 + (𝑣𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑣.𝑐).𝐻 ?= 𝑇𝑣 + 𝐶𝑇𝑣.𝑐

14. Verifies correctness of 𝐶𝑇𝑎𝑡 by checking: 𝑅𝑒𝑠𝑝𝑎𝑡[0].𝐺𝐸𝑛𝑐 + 𝑅𝑒𝑠𝑝𝑎𝑡[1].𝐻 ?= 𝑇𝑎𝑡 + 𝐶𝑇𝑎𝑡.𝑐
⟹ (𝑟4𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑟4.𝑐).𝐺𝐸𝑛𝑐 + (𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑎𝑡.𝑐).𝐻 ?= 𝑇𝑎𝑡 + 𝐶𝑇𝑎𝑡.𝑐
15. Verifier finally checks the Bulletproofs proof for all constraints i.e. curve point validity,

randomization consistency, curve tree membership, multiplication relations, and range
proof

DART Specification 26

6 Sender/Receiver Affirmations
6.1 Affirmations
Once has settlment has been posted on chain, sender/receiver send their agreement along with
a proof which proves that they are the party to that leg and they have done a correct account
state transition, invalidating previous state by submitting the nullifier and their revealing their
new state. Note that they don’t point to their old state in the accumulator.

For an account state to transition from 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 to 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, - secret key 𝑠𝑘, identity 𝑖𝑑 and
asset-id 𝑎𝑡 should not change - nullifer should be revealed as 𝜌𝑖.𝐺5 - nullifier secret key 𝜌𝑖 and
randomness 𝑠𝑗 should change as: 𝜌𝑖+1 = 𝜌.𝜌𝑖, 𝑠2.𝑗 = 𝑠𝑗.𝑠𝑗

Old state

𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 = 𝑠𝑘.𝐺𝐴𝑓𝑓+𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐺1+𝑐𝑜𝑢𝑛𝑡𝑒𝑟.𝐺2+𝑎𝑡.𝐺3+𝜌.𝐺4+𝜌𝑖.𝐺5+𝑠𝑗.𝐺6+𝑖𝑑.𝐺7 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 ∈ 𝔾𝑝

New state

𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 = 𝑠𝑘.𝐺𝐴𝑓𝑓+𝑏𝑎𝑙𝑎𝑛𝑐𝑒′.𝐺1+𝑐𝑜𝑢𝑛𝑡𝑒𝑟′.𝐺2+𝑎𝑡.𝐺3+𝜌.𝐺4+𝜌𝑖+1.𝐺5+𝑠2.𝑗.𝐺6+𝑖𝑑.𝐺7 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 ∈ 𝔾𝑝

𝑏𝑎𝑙𝑎𝑛𝑐𝑒 might or might not be same as 𝑏𝑎𝑙𝑎𝑛𝑐𝑒′ depending on who is affirming or what kind
of transaction it is. 𝑐𝑜𝑢𝑛𝑡𝑒𝑟′ might be 1 more or 1 less than 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 depending on the kind of
transaction. Also, it must be proved that the 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 has same asset-id 𝑎𝑡 that is in the leg
and has the public key for the same secret key as in the account.

For a single leg settlement of amount 𝑣 1. When a sender affirms a leg, its new account state’s
balance should be 𝑣 less than the old account’s and its counter should increase by 1. 2. When
a receiver affirms a leg, its new account state’s balance should be same as the old account’s
and its counter should increase by 1. 3. Sender can revert its affirmation by creating a new
account state which has the balance increased by 𝑣 and counter decreased by 1. 4. Receiver can
revert its affirmation by creating a new account state with counter decreased by 1. 5. Once a
settlement has been confirmed, i.e. it cant be reverted, - sender can send a counter update txn
to decrease its counter by 1 - receiver can send a claim funds txn to increases its balance by 𝑣
and decrease its counter by 1.

Table describing changes to balance and counter for various txns. 𝑠 and 𝑟 refer to txn sent by
sender and receiver respectively.

Transaction
Type Description

Balance
Change

Counter
Change

Affirm_s Sender affirms a leg of amount 𝑣 -v +1
Affirm_r Receiver affirms a leg 0 +1
Claim_r Receiver claims funds after settlement +v -1
CntUpd_s Sender updates counter after settlement 0 -1
Reverse_s Sender reverses their affirmation +v -1
Reverse_r Receiver reverses their affirmation 0 -1

6.1.1 Protocol

This section describes a unified account state transition proof which can handle all the above
scenarios and parts of this proof can be omitted when balance doesn’t change Here the prover
(sender/receiver) wants to prove following relations when sending affirmation for leg with amount
𝑣:

DART Specification 27

1. 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙0.𝐺1 + 𝑐𝑛𝑡0.𝐺2 + 𝑎𝑡.𝐺3 + 𝜌.𝐺4 + 𝜌𝑖.𝐺5 + 𝑠𝑗.𝐺6 + 𝑖𝑑.𝐺7
2. Similarly 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 = 𝑠𝑘.𝐺𝐴𝑓𝑓 +𝑏𝑎𝑙1.𝐺1+𝑐𝑛𝑡1.𝐺2+𝑎𝑡.𝐺3+𝜌.𝐺4+𝜌𝑖+1.𝐺5+𝑠2.𝑗.𝐺6+𝑖𝑑.𝐺7
3. 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 exists in the accumulator (account curve tree)
4. 𝑁 = 𝜌𝑖.𝐺5
5. 𝜌𝑖+1 = 𝜌.𝜌𝑖

6. 𝑠2.𝑗 = 𝑠𝑗.𝑠𝑗

7. If balance change is expected,
• 𝑏𝑎𝑙1 = 𝑏𝑎𝑙0 − 𝑣 (for Affirm_s)
• 𝑏𝑎𝑙1 = 𝑏𝑎𝑙0 + 𝑣 (for Claim_r or Reverse_s)

8. Counter change:
• 𝑐𝑛𝑡1 = 𝑐𝑛𝑡0 + 1 (Affirm_s, Affirm_r)
• 𝑐𝑛𝑡1 = 𝑐𝑛𝑡0 − 1 (Claim_r, CntUpd_s, Reverse_s, Reverse_r)

9. Since the change to counter is public, relation for 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 can be expressd as:
• 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤−𝐺2 = 𝑠𝑘.𝐺𝐴𝑓𝑓 +𝑏𝑎𝑙1.𝐺1+𝑐𝑛𝑡.𝐺2+𝑎𝑡.𝐺3+𝜌.𝐺4+𝜌𝑖+1.𝐺5+𝑠2.𝑗.𝐺6+𝑖𝑑.𝐺7

if counter increased by 1.
• 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤+𝐺2 = 𝑠𝑘.𝐺𝐴𝑓𝑓 +𝑏𝑎𝑙1.𝐺1+𝑐𝑛𝑡.𝐺2+𝑎𝑡.𝐺3+𝜌.𝐺4+𝜌𝑖+1.𝐺5+𝑠2.𝑗.𝐺6+𝑖𝑑.𝐺7

if counter decreased by 1.
10. 𝑏𝑎𝑙1 <= 𝑀𝐴𝑋𝐵𝐴𝐿𝐴𝑁𝐶𝐸 to avoid overflows
11. Prove that asset id in 𝐶𝑇𝑎𝑡 is 𝑎𝑡
12. If transition involves a balance change, prove that amount in 𝐶𝑇𝑣 is 𝑣
13. Prove that 𝑠𝑘 is the secret key of public key in:

• 𝐶𝑇𝑠 if they are sender
• 𝐶𝑇𝑟 if they are receiver

Instance: 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝑁 , 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐶𝑇𝑠, 𝐶𝑇𝑟, 𝐶𝑇𝑣, 𝐶𝑇𝑎𝑡, 𝐺𝐴𝑓𝑓 , 𝐺𝑖, 𝐻, 𝐻𝑖, 𝐺,

𝐺𝑖, 𝐻, 𝐻𝑖 ∈ 𝔾𝑞

Witness: 𝑠𝑘, 𝑎𝑡, 𝑖𝑑, 𝑣, 𝑏𝑎𝑙0, 𝑏𝑎𝑙1, 𝑐𝑛𝑡, 𝜌, 𝜌𝑖, 𝜌𝑖+1, 𝑠𝑗, 𝑠2.𝑗, 𝑃𝑎𝑡ℎ.

Above are the high level instance and witness values known before the protocol starts and don’t
include instance and witness created during protocol execution like the various blindings and 𝑇
values.

6.1.1.1 Prover

1. Prover first wants to prove knowledge of 𝑠𝑘, 𝑎𝑡, 𝑏𝑎𝑙0, 𝑐𝑛𝑡, 𝜌, 𝜌𝑖, 𝑠𝑗, 𝑖𝑑 in the relation
𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙0.𝐺1 + 𝑐𝑛𝑡0.𝐺2 + 𝑎𝑡.𝐺3 + 𝜌.𝐺4 + 𝜌𝑖.𝐺5 + 𝑠𝑗.𝐺6 + 𝑖𝑑.𝐺7

2. Similarly, prover wants to prove knowledge of 𝑠𝑘, 𝑎𝑡, 𝑏𝑎𝑙1, 𝑐𝑛𝑡, 𝜌, 𝜌𝑖+1, 𝑠2.𝑗, 𝑖𝑑 in 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
from relation 10.

• If counter increased by 1: 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 − 𝐺2 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙1.𝐺1 + 𝑐𝑛𝑡0.𝐺2 + 𝑎𝑡.𝐺3 +
𝜌.𝐺4 + 𝜌𝑖+1.𝐺5 + 𝑠2.𝑗.𝐺6 + 𝑖𝑑.𝐺7

• If counter decreased by 1: 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 + 𝐺2 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙1.𝐺1 + 𝑐𝑛𝑡0.𝐺2 + 𝑎𝑡.𝐺3 +
𝜌.𝐺4 + 𝜌𝑖+1.𝐺5 + 𝑠2.𝑗.𝐺6 + 𝑖𝑑.𝐺7

3. Prover gets the path of the leaf 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 as 𝑃𝑎𝑡ℎ, an array of nodes (curve points), and
randomizes it by adding blindings to all nodes. This will result in the leaf 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 being
transformed into 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

= 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 + 𝑏0.𝐻0 and 𝑃𝑎𝑡ℎ transforms into 𝑃𝑎𝑡ℎ𝑟. Prover
enforces the constraints for curve tree membership using 𝑃𝑎𝑡ℎ, 𝑃𝑎𝑡ℎ𝑟, 𝑏𝑖.

4. Since prover knows the opening of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 and 𝑏0, it can prove the knowledge of opening
of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

as well. So relation 1 can be transformed as:

𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙0.𝐺1 + 𝑐𝑛𝑡0.𝐺2 + 𝑎𝑡.𝐺3 + 𝜌.𝐺4 + 𝜌𝑖.𝐺5 + 𝑠𝑗.𝐺6 + 𝑖𝑑.𝐺7 + 𝑏0.𝐻0 = 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

DART Specification 28

5. Prover picks random 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
, 𝑐𝑛𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

, 𝜌𝑖+1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
, 𝑠𝑗

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑠2.𝑗
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑖𝑑𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

∈
ℤ𝑝 and creates:

𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
= 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺𝐴𝑓𝑓+𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺1+𝑐𝑛𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺2+𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺3+𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺4+𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐺5+𝑠𝑗

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺6+𝑖𝑑𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺7+𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐻0, ∈ 𝔾𝑝

6. For the new state, create:

𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
= 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺𝐴𝑓𝑓+𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺1+𝑐𝑛𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺2+𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺3+𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺4+𝜌𝑖+1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐺5+𝑠2.𝑗

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺6+𝑖𝑑𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺7, ∈ 𝔾𝑝

Same blindings for 𝑠𝑘, 𝑎𝑡, 𝑐𝑛𝑡, 𝜌, 𝑖𝑑 are used in both old and new state since these values
don’t change. If balance doesn’t change, also use same blinding so 𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

= 𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.

7. For the correctness of nullifier, prover creates:

𝑇𝑛𝑢𝑙𝑙 = 𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐺5, ∈ 𝔾𝑝

8. For enforcing 𝜌𝑖+1 = 𝜌.𝜌𝑖 and 𝑠2.𝑗 = 𝑠𝑗.𝑠𝑗, prover sets up the constraints in Bulletproof as
both are multiplications. Prover uses Sigma protocol (Chaum Pedersen) to prove equality
of committed values in Bulletproof’s commitment and in the state commitments. Let
𝐶𝐵𝑃𝜌,𝑠

be the commitment:

𝐶𝐵𝑃𝜌,𝑠
= 𝑏′.𝐻0 + 𝜌.𝐻1 + 𝜌𝑖.𝐻2 + 𝜌𝑖+1.𝐻3 + 𝑠𝑗.𝐻4 + 𝑠2.𝑗.𝐻5, ∈ 𝔾𝑝

9. If the balance changes, prover sets up constraint in Bulletproof based on transaction type:

• If balance change is −𝑣: 𝑏𝑎𝑙1 = 𝑏𝑎𝑙0 − 𝑣
• If balance change is +𝑣: 𝑏𝑎𝑙1 = 𝑏𝑎𝑙0 + 𝑣

Let 𝐶𝐵𝑃𝑏𝑎𝑙
be the commitment:

𝐶𝐵𝑃𝑏𝑎𝑙
= 𝑏″.𝐻0 + 𝑣.𝐻1 + 𝑏𝑎𝑙0.𝐻2 + 𝑏𝑎𝑙1.𝐻3, ∈ 𝔾𝑝

10. Prover creates commitment for 𝐶𝐵𝑃𝜌,𝑠
by picking random 𝑟𝐵𝑃𝜌,𝑠

∈ ℤ𝑝:

𝑇𝐵𝑃𝜌,𝑠
= 𝑟𝐵𝑃𝜌,𝑠

.𝐻0+𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻1+𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐻2+𝜌𝑖+1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐻3+𝑠𝑗
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻4+𝑠2.𝑗

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻5, ∈ 𝔾𝑝

11. Prover creates commitment for 𝐶𝐵𝑃𝑏𝑎𝑙
by picking random 𝑣𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑟𝐵𝑃𝑏𝑎𝑙

∈ ℤ𝑝:

𝑇𝐵𝑃𝑏𝑎𝑙
= 𝑟𝐵𝑃𝑏𝑎𝑙

.𝐻0 + 𝑣𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻1 + 𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐻2 + 𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐻3, ∈ 𝔾𝑝

12. For proving 𝑎𝑡 in 𝐶𝑇𝑎𝑡, picks random 𝑟4𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
∈ ℤ𝑝 and creates: 𝑇𝑎𝑡 = 𝑟4𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺𝐸𝑛𝑐 +
𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻 13. For proving the correctness of public key in leg, picks random 𝑟𝑝𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

∈ ℤ𝑝
and creates: 𝑇𝑝𝑘 = 𝑟𝑝𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺𝐸𝑛𝑐 + 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺𝐴𝑓𝑓 if sender 14. If balance changes, picks
random 𝑟3𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

∈ ℤ𝑝 and creates: 𝑇𝑣 = 𝑟3𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐺𝐸𝑛𝑐 + 𝑣𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐻 15. Prover hashes the

following to create challenge 𝑐 as:

𝑐 = 𝐻𝑎𝑠ℎ(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝑁, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐶𝑇𝑠, 𝐶𝑇𝑟, 𝐶𝑇𝑣, 𝐶𝑇𝑎𝑡, 𝐶𝐵𝑃𝜌,𝑠

, 𝐶𝐵𝑃𝑏𝑎𝑙
, 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝐵𝑃𝜌,𝑠

, 𝑇𝐵𝑃𝑏𝑎𝑙
, 𝑇𝑎𝑡, 𝑇𝑝𝑘, 𝑇𝑣)

16. Prover creates responses for 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
= [𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠𝑘.𝑐, 𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑏𝑎𝑙0.𝑐, 𝑐𝑛𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑐𝑛𝑡0.𝑐, 𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑎𝑡.𝑐, 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌.𝑐, 𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝜌𝑖.𝑐, 𝑠𝑗

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠𝑗.𝑐, 𝑖𝑑𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑖𝑑.𝑐, 𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝑏0.𝑐]

17. Prover creates responses for 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
. If balance changes, create response for 𝑏𝑎𝑙1,

otherwise mark as ⊥:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
= [⊥, 𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑏𝑎𝑙1.𝑐 or ⊥, ⊥, ⊥, ⊥, 𝜌𝑖+1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝜌𝑖+1.𝑐, 𝑠2.𝑗

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠2.𝑗.𝑐, ⊥, ⊥]

DART Specification 29

18. Response for nullifier:
𝑅𝑒𝑠𝑝𝑛𝑢𝑙𝑙 = 𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝜌𝑖.𝑐
19. For relation 𝐶𝐵𝑃𝜌,𝑠

, only the response for blinding 𝑏′ needs to be created: 𝑅𝑒𝑠𝑝𝑏′ =
𝑟𝐵𝑃𝜌,𝑠

+ 𝑏′.𝑐 𝑅𝑒𝑠𝑝𝑣 = 𝑣𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑣.𝑐 20. For relation 𝐶𝐵𝑃𝑏𝑎𝑙
, only the response for blinding 𝑏″

and amount 𝑣 needs to be created: 𝑅𝑒𝑠𝑝𝑏″ = 𝑟𝐵𝑃𝑏𝑎𝑙
+ 𝑏″.𝑐 21. Response for asset-id in leg:

𝑅𝑒𝑠𝑝𝑟4
= 𝑟4𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑟4.𝑐 22. Response for public key in leg: 𝑅𝑒𝑠𝑝𝑝𝑘 = 𝑟𝑝𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝑟𝑝𝑘.𝑐 23. If

balance changes, response for amount in leg: 𝑅𝑒𝑠𝑝𝑟3
= 𝑟3𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑟3.𝑐 18. The proof is

(𝐶𝐵𝑃𝜌,𝑠
, 𝐶𝐵𝑃𝑏𝑎𝑙

, 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝑃𝑎𝑡ℎ𝑟, 𝑁, 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝐵𝑃𝜌,𝑠

, 𝑇𝐵𝑃𝑏𝑎𝑙
, 𝑇𝑎𝑡, 𝑇𝑝𝑘, 𝑇𝑣, 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
, 𝑅𝑒𝑠𝑝𝑛𝑢𝑙𝑙, 𝑅𝑒𝑠𝑝𝑏′ , 𝑅𝑒𝑠𝑝𝑏″ , 𝑅𝑒𝑠𝑝𝑣, 𝑅𝑒𝑠𝑝𝑎𝑡, 𝑅𝑒𝑠𝑝𝑝𝑘, 𝑅𝑒𝑠𝑝𝑟3

)

Verifier

1. Verifier knows the transaction type 𝑡𝑥𝑛𝑡𝑦𝑝𝑒 which determines counter direction and bal-
ance change expectations.

2. Verifier hashes the following to create challenge 𝑐 as:

𝑐 = 𝐻𝑎𝑠ℎ(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝑁, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝑡𝑥𝑛𝑡𝑦𝑝𝑒, 𝐶𝐵𝑃𝜌,𝑠

, 𝐶𝐵𝑃𝑏𝑎𝑙
, 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝐵𝑃𝜌,𝑠

, 𝑇𝐵𝑃𝑏𝑎𝑙
, 𝑇𝑎𝑡, 𝑇𝑝𝑘, 𝑇𝑣)

3. Verifier enforces the Bulletproof constraints for the 2 multiplications: 𝜌𝑖+1 = 𝜌.𝜌𝑖

and 𝑠2.𝑗 = 𝑠𝑗.𝑠𝑗.
3. Verifier enforces the Bulletproof constraint for the balance change based on 𝑡𝑥𝑛𝑡𝑦𝑝𝑒:

• If 𝑡𝑥𝑛𝑡𝑦𝑝𝑒 ∈ {𝐴𝑓𝑓𝑖𝑟𝑚𝑠}: 𝑏𝑎𝑙1 = 𝑏𝑎𝑙0 − 𝑣
• If 𝑡𝑥𝑛𝑡𝑦𝑝𝑒 ∈ {𝐶𝑙𝑎𝑖𝑚𝑟, 𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑠}: 𝑏𝑎𝑙1 = 𝑏𝑎𝑙0 + 𝑣

4. Verifier enforces the Bulletproof constraints for curve tree membership to verify that 𝑃𝑎𝑡ℎ𝑟
leads to 𝑅𝑜𝑜𝑡.

5. Verifies correctness of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
by checking:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[0].𝐺𝐴𝑓𝑓+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[1].𝐺1+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[2].𝐺2+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[3].𝐺3+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[4].𝐺4+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[5].𝐺5+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[6].𝐺6+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[7].𝐺7+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[8].𝐻0

?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
+𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

.𝑐

⟹ (𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠𝑘.𝑐).𝐺𝐴𝑓𝑓+(𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝑏𝑎𝑙0.𝑐).𝐺1+(𝑐𝑛𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑐𝑛𝑡0.𝑐).𝐺2+(𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑎𝑡.𝑐).𝐺3+(𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝜌.𝑐).𝐺4+(𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝜌𝑖.𝑐).𝐺5+(𝑠𝑗
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠𝑗.𝑐).𝐺6+(𝑖𝑑𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑖𝑑.𝑐).𝐺7+(𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝑏0.𝑐).𝐻0
?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

+𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
.𝑐

6. Verifies correctness of 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 by checking:
• If counter increased by 1:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[0].𝐺𝐴𝑓𝑓+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤

[1].𝐺1+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[2].𝐺2+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[3].𝐺3+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[4].𝐺4+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤

[5].𝐺5+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
[6].𝐺6+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[7].𝐺7
?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤

+(𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤−𝐺2).𝑐

• If counter decreased by 1:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[0].𝐺𝐴𝑓𝑓+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤

[1].𝐺1+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[2].𝐺2+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[3].𝐺3+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[4].𝐺4+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤

[5].𝐺5+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
[6].𝐺6+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[7].𝐺7
?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤

+(𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤+𝐺2).𝑐

If balance doesn’t change, 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
[1] is ⊥ and verifier uses 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[1] for both
old and new balance responses.

⟹ (𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠𝑘.𝑐).𝐺𝐴𝑓𝑓+(𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝑏𝑎𝑙1.𝑐).𝐺1+(𝑐𝑛𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑐𝑛𝑡0.𝑐).𝐺2+(𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑎𝑡.𝑐).𝐺3+(𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝜌.𝑐).𝐺4+(𝜌𝑖+1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝜌𝑖+1.𝑐).𝐺5+(𝑠2.𝑗
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠2.𝑗.𝑐).𝐺6+(𝑖𝑑𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑖𝑑.𝑐).𝐺7

?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
+(adjusted 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤).𝑐

8. Verifies correctness of nullifier by checking: 𝑅𝑒𝑠𝑝𝑛𝑢𝑙𝑙.𝐺5
?= 𝑇𝑛𝑢𝑙𝑙 + 𝑁.𝑐 ⟹ (𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+
𝜌𝑖.𝑐).𝐺5

?= 𝑇𝑛𝑢𝑙𝑙 + 𝑁.𝑐
9. Verifier checks response for 𝐶𝐵𝑃𝜌,𝑠

as:

𝑅𝑒𝑠𝑝𝑏′ .𝐻0+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[4].𝐻1+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[5].𝐻2+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
[5].𝐻3+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[6].𝐻4+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
[6].𝐻5

?= 𝑇𝐵𝑃𝜌,𝑠
+𝐶𝐵𝑃𝜌,𝑠

.𝑐

⟹ (𝑟𝐵𝑃𝜌,𝑠
+𝑏′.𝑐).𝐻0+(𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝜌.𝑐).𝐻1+(𝜌𝑖𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝜌𝑖.𝑐).𝐻2+(𝜌𝑖+1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝜌𝑖+1.𝑐).𝐻3+(𝑠𝑗

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠𝑗.𝑐).𝐻4+(𝑠2.𝑗
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠2.𝑗.𝑐).𝐻5

?= 𝑇𝐵𝑃𝜌,𝑠
+𝐶𝐵𝑃𝜌,𝑠

.𝑐

DART Specification 30

10. Verifier checks response for 𝐶𝐵𝑃𝑏𝑎𝑙
as: 𝑅𝑒𝑠𝑝𝑏″ .𝐻0 + 𝑅𝑒𝑠𝑝𝑣.𝐻1 + 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[1].𝐻2 +
𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤

[1].𝐻3
?= 𝑇𝐵𝑃𝑏𝑎𝑙

+ 𝐶𝐵𝑃𝑏𝑎𝑙
.𝑐 ⟹ (𝑟𝐵𝑃𝑏𝑎𝑙

+ 𝑏″.𝑐).𝐻0 + (𝑣𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑣.𝑐).𝐻1 +
(𝑏𝑎𝑙0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑏𝑎𝑙0.𝑐).𝐻2 + (𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝑏𝑎𝑙1.𝑐).𝐻3

?= 𝑇𝐵𝑃𝑏𝑎𝑙
+ 𝐶𝐵𝑃𝑏𝑎𝑙

.𝑐

11. Verifier checks response for 𝐶𝑇𝑎𝑡 by checking: 𝑅𝑒𝑠𝑝𝑟4
.𝐺𝐸𝑛𝑐 + 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[3].𝐻 ?= 𝑇𝑎𝑡 +
𝐶𝑇𝑎𝑡.𝑐 ⟹ (𝑟4𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑟4.𝑐).𝐺𝐸𝑛𝑐 + (𝑎𝑡𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑎𝑡.𝑐).𝐻 ?= 𝑇𝑎𝑡 + 𝐶𝑇𝑎𝑡.𝑐

12. Verifier checks response for public key in leg by checking: 𝑅𝑒𝑠𝑝𝑝𝑘.𝐺𝐸𝑛𝑐+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[0].𝐺𝐴𝑓𝑓

?=
𝑇𝑝𝑘 + 𝐶𝑇𝑠.𝑐 (if sender) ⟹ (𝑟𝑝𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑟𝑝𝑘.𝑐).𝐺𝐸𝑛𝑐 + (𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠𝑘.𝑐).𝐺𝐴𝑓𝑓
?=

𝑇𝑝𝑘 + 𝐶𝑇𝑠.𝑐

𝑅𝑒𝑠𝑝𝑝𝑘.𝐺𝐸𝑛𝑐 +𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[0].𝐺𝐴𝑓𝑓

?= 𝑇𝑝𝑘 +𝐶𝑇𝑟.𝑐 (if receiver) ⟹ (𝑟𝑝𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝑟𝑝𝑘.𝑐).𝐺𝐸𝑛𝑐 +

(𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠𝑘.𝑐).𝐺𝐴𝑓𝑓
?= 𝑇𝑝𝑘 + 𝐶𝑇𝑠.𝑐

13. If balance changes, verifier checks response for amount in leg by checking: 𝑅𝑒𝑠𝑝𝑟3
.𝐺𝐸𝑛𝑐 +

𝑅𝑒𝑠𝑝𝑣.𝐻 ?= 𝑇𝑣 + 𝐶𝑇𝑣.𝑐

⟹ (𝑟3𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝑟3.𝑐).𝐺𝐸𝑛𝑐 + (𝑣𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑣.𝑐).𝐻 ?= 𝑇𝑣 + 𝐶𝑇𝑣.𝑐

14. Verifier finally checks the Bulletproofs proof for all constraints i.e. curve tree membership,
multiplications, and balance change

DART Specification 31

6.2 Fee
Fee accounts are different from regualar accounts and their states are tracked in a different
curve tree. Fee accounts also transition from one state to another, invalidating old state by
revealing the nullifier. Fee can be paid in designated assets and these are different from non-fee
paying assets. These assets don’t have auditors or mediators. Fee accounts support minting and
spend. During both the amount minted or spent is public but the balance of new state is kept
private. Also, for fee payment asset-id is always revealed. Nullifier secret key 𝜌 and commitment
randomness 𝑠 are not generated deterministically but chosen randomly. They don’t have an id
or counter. Following shows a state transition in fee account.

𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐺1 + 𝑎𝑡.𝐺3 + 𝜌.𝐺5 + 𝑠.𝐺6, 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 ∈ 𝔾𝑝

𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙𝑎𝑛𝑐𝑒′.𝐺1 + 𝑎𝑡.𝐺3 + 𝜌′.𝐺5 + 𝑠′.𝐺6, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 ∈ 𝔾𝑝

6.2.1 Account registration

A user can register fee account with a non-zero balance. The asset-id, balance and public key
are public during registration. A successful completion of registration results in the following:

1. A state 𝑆𝑡𝑎𝑡𝑒0 being inserted as a leaf in the accounts curve tree where

𝑆𝑡𝑎𝑡𝑒0 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐺1 + 𝑎𝑡.𝐺3 + 𝜌.𝐺5 + 𝑠.𝐺6

2. Pair asset-id, public key (𝑎𝑠𝑠𝑒𝑡_𝑖𝑑, 𝑃𝐾𝐴𝑓𝑓(= 𝑠𝑘.𝐺𝐴𝑓𝑓)) is added to the Asset-account
mapping

6.2.1.1 Protocol Here the prover (investor) wants to prove following relations:

1. 𝑆𝑡𝑎𝑡𝑒0 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐺1 + 𝑎𝑡.𝐺3 + 𝜌.𝐺5 + 𝑠.𝐺6. This is equivalent to proving
𝑆𝑡𝑎𝑡𝑒0 − 𝐴𝐾 − 𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐺1 − 𝑎𝑡.𝐺3 = 𝜌.𝐺5 + 𝑠.𝐺6 since 𝐴𝐾, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑎𝑡 are revealed to
the verifier.

2. 𝐴𝐾 = 𝑠𝑘.𝐺𝐴𝑓𝑓

6.2.1.1.1 Prover

1. Prover wants to prove knowledge of 𝜌, 𝑠 in the relation 𝜌.𝐺5 + 𝑠.𝐺6 = 𝑆𝑡𝑎𝑡𝑒0 − 𝐴𝐾 −
𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐺1 − 𝑎𝑡.𝐺3 where the RHS is public.

2. Similarly, prover wants to prove knowledge of 𝑠𝑘 in 𝐴𝐾 = 𝑠𝑘.𝐺𝐴𝑓𝑓 .

3. Prover picks random:

𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
$← ℤ𝑝

and creates:
𝑇𝑠𝑡𝑎𝑡𝑒 = 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺5 + 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺6, ∈ 𝔾𝑝

4. For proving knowledge of secret key, prover creates: 𝑇𝑝𝑘 = 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺𝐴𝑓𝑓 , ∈ 𝔾𝑝

5. Prover hashes the following to create challenge 𝑐 as: 𝑐 = 𝐻𝑎𝑠ℎ(𝑆𝑡𝑎𝑡𝑒0, 𝐴𝐾, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑎𝑡, 𝑇𝑠𝑡𝑎𝑡𝑒, 𝑇𝑝𝑘)
6. Prover creates responses for 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒 = [𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌.𝑐, 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠.𝑐]

DART Specification 32

7. Response for secret key: 𝑅𝑒𝑠𝑝𝑝𝑘 = 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠𝑘.𝑐
8. The proof is

(𝑆𝑡𝑎𝑡𝑒0, 𝐴𝐾, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑎𝑡, 𝑇𝑠𝑡𝑎𝑡𝑒, 𝑇𝑝𝑘, 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒, 𝑅𝑒𝑠𝑝𝑝𝑘)

6.2.1.1.2 Verifier

1. Verifier hashes the following to create challenge 𝑐 as: 𝑐 = 𝐻𝑎𝑠ℎ(𝑆𝑡𝑎𝑡𝑒0, 𝐴𝐾, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑎𝑡, 𝑇𝑠𝑡𝑎𝑡𝑒, 𝑇𝑝𝑘)
2. Verifies correctness of 𝑆𝑡𝑎𝑡𝑒0 by checking:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒[0].𝐺5 + 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒[1].𝐺6
?= 𝑇𝑠𝑡𝑎𝑡𝑒 + (𝑆𝑡𝑎𝑡𝑒0 − 𝐴𝐾 − 𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐺1 − 𝑎𝑡.𝐺3).𝑐

⟹ (𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌.𝑐).𝐺5 + (𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠.𝑐).𝐺6
?= 𝑇𝑠𝑡𝑎𝑡𝑒 + (𝑆𝑡𝑎𝑡𝑒0 − 𝐴𝐾 − 𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐺1 − 𝑎𝑡.𝐺3).𝑐

3. Verifies knowledge of secret key by checking: 𝑅𝑒𝑠𝑝𝑝𝑘.𝐺𝐴𝑓𝑓
?= 𝑇𝑝𝑘+𝐴𝐾.𝑐 ⟹ (𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+

𝑠𝑘.𝑐).𝐺𝐴𝑓𝑓
?= 𝑇𝑝𝑘 + 𝐴𝐾.𝑐

6.2.2 Account top-up

This is similar to regular account’s minting txn where the balance in 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 is increased by
a public amount 𝑣 and the public key 𝑠𝑘.𝐺𝐴𝑓𝑓 is revealed as well.

A successful completion of top-up txn results in the following:

1. The user’s old account state 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 is invalidated and new state 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 is created.
However, 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 cannot be revealed as it identifies which account state is being invali-
dated. So a randomized version of it 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

is used in relations.
2. Nullifier 𝑁 = 𝜌.𝐺5 is revealed by issuer and chain adds it to the nullifier set. Here 𝜌 refers

to the nullifier secret key of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑
3. The balance in 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 is more than balance in 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 by the minted amount
4. 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 is inserted as a new leaf in the curve tree.

6.2.2.1 Protocol Here the prover (user) wants to prove following relations when minting
amount 𝑣:

1. 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙0.𝐺1 + 𝑎𝑡.𝐺3 + 𝜌.𝐺5 + 𝑠𝑗.𝐺6. This is equivalent to proving
𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 = 𝐴𝐾 + 𝑏𝑎𝑙0.𝐺1 + 𝑎𝑡.𝐺3 + 𝜌.𝐺5 + 𝑠𝑗.𝐺6 since public key 𝐴𝐾 is revealed to the
verifier. Since 𝑏𝑎𝑙0 + 𝑣 = 𝑏𝑎𝑙1, this is equivalent to 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 + 𝑣.𝐺1 = 𝐴𝐾 + 𝑏𝑎𝑙1.𝐺1 +
𝑎𝑡.𝐺3 + 𝜌.𝐺5 + 𝑠𝑗.𝐺6

2. Similarly 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 = 𝐴𝐾 + 𝑏𝑎𝑙1.𝐺1 + 𝑎𝑡.𝐺3 + 𝜌′.𝐺5 + 𝑠′.𝐺6.
3. 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 exists in the accumulator (account curve tree)
4. 𝑁 = 𝜌.𝐺5
5. 𝐴𝐾 = 𝑠𝑘.𝐺𝐴𝑓𝑓
6. 𝑏𝑎𝑙1 = 𝑏𝑎𝑙0 + 𝑣
7. 𝑏𝑎𝑙1 <= 𝑀𝐴𝑋𝐹 𝐸𝐸𝐵𝐴𝐿𝐴𝑁𝐶𝐸

Instance: 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝐴𝐾, 𝑎𝑡, 𝑁, 𝑣, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐺𝐴𝑓𝑓 , 𝐺𝑖, 𝐻𝑖

Witness: 𝑠𝑘, 𝑏𝑎𝑙0, 𝑏𝑎𝑙1, 𝜌, 𝜌′, 𝑠, 𝑠′, 𝑃𝑎𝑡ℎ.

Above are the high level instance and witness values known before the protocol starts and don’t
include instance and witness created during protocol execution like the various blindings and 𝑇
values.

DART Specification 33

6.2.2.1.1 Prover

1. Prover wants to prove knowledge of 𝑏𝑎𝑙1, 𝜌, 𝑠 in the relation 𝑏𝑎𝑙1.𝐺1 + 𝜌.𝐺5 + 𝑠.𝐺6 =
𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

+ 𝑣.𝐺1 − 𝐴𝐾 − 𝑎𝑡.𝐺3.

2. Similarly, prover wants to prove knowledge of 𝑏𝑎𝑙1, 𝜌′, 𝑠′ in 𝑏𝑎𝑙1.𝐺1 + 𝜌′.𝐺5 + 𝑠′.𝐺6 =
𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 − 𝐴𝐾 − 𝑎𝑡.𝐺3 where the RHS is public.

3. Prover gets the path of the leaf 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 as 𝑃𝑎𝑡ℎ, an array of nodes (curve points), and
randomizes it by adding blindings to all nodes. This will result in the leaf 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 being
transformed into 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

= 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 + 𝑏0.𝐻0 and 𝑃𝑎𝑡ℎ transforms into 𝑃𝑎𝑡ℎ𝑟. Prover
enforces the constraints for curve tree membership using 𝑃𝑎𝑡ℎ, 𝑃𝑎𝑡ℎ𝑟, 𝑏𝑖.

4. Since prover knows the opening of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 and 𝑏0, it can prove the knowledge of opening
of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

as well. So relation 1 can be transformed as:

𝑏𝑎𝑙1.𝐺1 + 𝜌.𝐺5 + 𝑠.𝐺6 + 𝑏0.𝐻0 = 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
+ 𝑣.𝐺1 − 𝐴𝐾 − 𝑎𝑡.𝐺3

where the RHS is public.

5. Prover picks random

𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
, 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝜌′

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑠′
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

$← ℤ𝑝

and creates:

𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
= 𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺1 + 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺5 + 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺6 + 𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐻0, ∈ 𝔾𝑝

6. For the new state, create

𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
= 𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺1 + 𝜌′
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺5 + 𝑠′

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺6, ∈ 𝔾𝑝

Same blinding 𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
is used for both old and new state as the equation of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

has been adjusted to keep balance witness same.

7. For the correctness of nullifier and knowledge of secret key, prover creates: 𝑇𝑛𝑢𝑙𝑙 =
𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺5, ∈ 𝔾𝑝 𝑇𝑝𝑘 = 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺𝐴𝑓𝑓 , ∈ 𝔾𝑝

8. For enforcing 𝑏𝑎𝑙1 <= 𝑀𝐴𝑋𝐹 𝐸𝐸𝐵𝐴𝐿𝐴𝑁𝐶𝐸, prover sets up constraints in Bulletproof.
Let 𝐶𝐵𝑃𝑏𝑎𝑙

be the commitment:

𝐶𝐵𝑃𝑏𝑎𝑙
= 𝑏′.𝐻0 + 𝑏𝑎𝑙1.𝐻1, ∈ 𝔾𝑝

9. Prover creates commitment for 𝐶𝐵𝑃𝑏𝑎𝑙
by picking random 𝑟𝐵𝑃𝑏𝑎𝑙

∈ ℤ𝑝:

𝑇𝐵𝑃𝑏𝑎𝑙
= 𝑟𝐵𝑃𝑏𝑎𝑙

.𝐻0 + 𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐻1, ∈ 𝔾𝑝

10. Prover hashes the following to create challenge 𝑐 as:

𝑐 = 𝐻𝑎𝑠ℎ(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝐴𝐾, 𝑎𝑡, 𝑁, 𝑣, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐶𝐵𝑃𝑏𝑎𝑙

, 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤

, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝑝𝑘, 𝑇𝐵𝑃𝑏𝑎𝑙
)

11. Prover creates responses for 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
= [𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑏𝑎𝑙1.𝑐, 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌.𝑐, 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠.𝑐, 𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝑏0.𝑐]

DART Specification 34

11. Prover creates responses for 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
= [⊥, 𝜌′

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌′.𝑐, 𝑠′
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠′.𝑐]

The symbol ⊥ indicates that no response is created for 𝑏𝑎𝑙1 since a response has been
created for the same witness in 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

.

12. Response for nullifier: 𝑅𝑒𝑠𝑝𝑛𝑢𝑙𝑙 = 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌.𝑐
13. Response for secret key: 𝑅𝑒𝑠𝑝𝑝𝑘 = 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠𝑘.𝑐
14. For relation 𝐶𝐵𝑃𝑏𝑎𝑙

, only the response for blinding 𝑏′ needs to be created: 𝑅𝑒𝑠𝑝𝑏′ =
𝑟𝐵𝑃𝑏𝑎𝑙

+ 𝑏′.𝑐
15. The proof is

(𝐶𝐵𝑃𝑏𝑎𝑙
, 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝑃𝑎𝑡ℎ𝑟, 𝑁, 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤

, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝑝𝑘, 𝑇𝐵𝑃𝑏𝑎𝑙
, 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
, 𝑅𝑒𝑠𝑝𝑛𝑢𝑙𝑙, 𝑅𝑒𝑠𝑝𝑝𝑘, 𝑅𝑒𝑠𝑝𝑏′)

6.2.2.1.2 Verifier

1. Verifier hashes the following to create challenge 𝑐 as:
𝑐 = 𝐻𝑎𝑠ℎ(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝐴𝐾, 𝑎𝑡, 𝑁, 𝑣, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐶𝐵𝑃𝑏𝑎𝑙
, 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝑝𝑘, 𝑇𝐵𝑃𝑏𝑎𝑙

)
2. Verifier enforces the Bulletproof constraint for the balance change: 𝑏𝑎𝑙1 <=

𝑀𝐴𝑋𝐹 𝐸𝐸𝐵𝐴𝐿𝐴𝑁𝐶𝐸. (Constraints in the appendix)

2. Verifier enforces the Bulletproof constraints for curve tree membership to verify that 𝑃𝑎𝑡ℎ𝑟
leads to 𝑅𝑜𝑜𝑡. (Constraints in the appendix)

3. Verifies correctness of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
by checking:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[0].𝐺1+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[1].𝐺5+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[2].𝐺6+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[3].𝐻0
?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

+(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
+𝑣.𝐺1−𝐴𝐾−𝑎𝑡.𝐺3).𝑐

⟹ (𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝑏𝑎𝑙1.𝑐).𝐺1+(𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝜌.𝑐).𝐺5+(𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠.𝑐).𝐺6+(𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝑏0.𝑐).𝐻0
?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

+(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
+𝑣.𝐺1−𝐴𝐾−𝑎𝑡.𝐺3).𝑐

5. Verifies correctness of 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 by checking:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[0].𝐺1+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤

[1].𝐺5+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
[2].𝐺6

?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
+(𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤−𝐴𝐾−𝑎𝑡.𝐺3).𝑐

⟹ (𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝑏𝑎𝑙1.𝑐).𝐺1+(𝜌′

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝜌′.𝑐).𝐺5+(𝑠′
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠′.𝑐).𝐺6

?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
+(𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤−𝐴𝐾−𝑎𝑡.𝐺3).𝑐

Note that for the 𝑏𝑎𝑙1 component, verifier reuses the response from 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
as indicated

by ⊥ in 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
.

6. Verifies correctness of nullifier by checking: 𝑅𝑒𝑠𝑝𝑛𝑢𝑙𝑙.𝐺5
?= 𝑇𝑛𝑢𝑙𝑙 + 𝑁.𝑐 ⟹ (𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 +

𝜌.𝑐).𝐺5
?= 𝑇𝑛𝑢𝑙𝑙 + 𝑁.𝑐

7. Verifies knowledge of secret key by checking: 𝑅𝑒𝑠𝑝𝑝𝑘.𝐺𝐴𝑓𝑓
?= 𝑇𝑝𝑘+𝐴𝐾.𝑐 ⟹ (𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+

𝑠𝑘.𝑐).𝐺𝐴𝑓𝑓
?= 𝑇𝑝𝑘 + 𝐴𝐾.𝑐

8. Verifier checks response for 𝐶𝐵𝑃𝑏𝑎𝑙
as: 𝑅𝑒𝑠𝑝𝑏′ .𝐻0 +𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[0].𝐻1
?= 𝑇𝐵𝑃𝑏𝑎𝑙

+𝐶𝐵𝑃𝑏𝑎𝑙
.𝑐

⟹ (𝑟𝐵𝑃𝑏𝑎𝑙
+ 𝑏′.𝑐).𝐻0 + (𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑏𝑎𝑙1.𝑐).𝐻1
?= 𝑇𝐵𝑃𝑏𝑎𝑙

+ 𝐶𝐵𝑃𝑏𝑎𝑙
.𝑐

9. Verifier finally checks the Bulletproofs proof for all constraints i.e. curve tree membership
and balance change

DART Specification 35

6.2.3 Fee payment

To pay of amount 𝑣, the old account state is transitioned to a new one whose balance is 𝑣 less
than the previous one. The user must always reveal the asset-id for fee.

A successful completion of fee payment results in the following:

1. The user’s old account state 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 is invalidated and new state 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 is created.
However, 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 cannot be revealed as it identifies which account state is being invali-
dated. So a randomized version of it 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

is used in relations.
2. Nullifier 𝑁 = 𝜌.𝐺5 is revealed by issuer and chain adds it to the nullifier set. Here 𝜌 refers

to the nullifier secret key of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑
3. The balance in 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 is less than balance in 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 by the fee amount
4. 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 is inserted as a new leaf in the curve tree.

6.2.3.1 Protocol Here the prover (user) wants to prove following relations when minting
amount 𝑣:

1. 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙0.𝐺1 + 𝑎𝑡.𝐺3 + 𝜌.𝐺5 + 𝑠𝑗.𝐺6. Since 𝑏𝑎𝑙0 − 𝑣 = 𝑏𝑎𝑙1, this is
equivalent to 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 + 𝑣.𝐺1 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙1.𝐺1 + 𝑎𝑡.𝐺3 + 𝜌.𝐺5 + 𝑠𝑗.𝐺6

2. Similarly 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 = 𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙1.𝐺1 + 𝑎𝑡.𝐺3 + 𝜌′.𝐺5 + 𝑠′.𝐺6.
3. 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 exists in the accumulator (account curve tree)
4. 𝑁 = 𝜌.𝐺5
5. 𝑏𝑎𝑙1 = 𝑏𝑎𝑙0 − 𝑣
6. 𝑏𝑎𝑙1 <= 𝑀𝐴𝑋𝐹 𝐸𝐸𝐵𝐴𝐿𝐴𝑁𝐶𝐸

Instance: 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝑎𝑡, 𝑁, 𝑣, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐺𝐴𝑓𝑓 , 𝐺𝑖, 𝐻𝑖

Witness: 𝑠𝑘, 𝑏𝑎𝑙0, 𝑏𝑎𝑙1, 𝜌, 𝜌′, 𝑠, 𝑠′, 𝑃𝑎𝑡ℎ.

Above are the high level instance and witness values known before the protocol starts and don’t
include instance and witness created during protocol execution like the various blindings and 𝑇
values.

6.2.3.1.1 Prover

1. Prover wants to prove knowledge of 𝑠𝑘, 𝑏𝑎𝑙1, 𝜌, 𝑠 in the relation 𝑏𝑎𝑙1.𝐺1 + 𝜌.𝐺5 + 𝑠.𝐺6 =
𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

+ 𝑣.𝐺1 − 𝑎𝑡.𝐺3 − 𝑠𝑘.𝐺𝐴𝑓𝑓 .

2. Similarly, prover wants to prove knowledge of 𝑠𝑘, 𝑏𝑎𝑙1, 𝜌′, 𝑠′ in 𝑏𝑎𝑙1.𝐺1 + 𝜌′.𝐺5 + 𝑠′.𝐺6 =
𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 − 𝑎𝑡.𝐺3 − 𝑠𝑘.𝐺𝐴𝑓𝑓 where the RHS is public.

3. Prover gets the path of the leaf 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 as 𝑃𝑎𝑡ℎ, an array of nodes (curve points), and
randomizes it by adding blindings to all nodes. This will result in the leaf 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 being
transformed into 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

= 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 + 𝑏0.𝐻0 and 𝑃𝑎𝑡ℎ transforms into 𝑃𝑎𝑡ℎ𝑟. Prover
enforces the constraints for curve tree membership using 𝑃𝑎𝑡ℎ, 𝑃𝑎𝑡ℎ𝑟, 𝑏𝑖.

4. Since prover knows the opening of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑 and 𝑏0, it can prove the knowledge of opening
of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

as well. So relation 1 can be transformed as:

𝑠𝑘.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙1.𝐺1 + 𝜌.𝐺5 + 𝑠.𝐺6 + 𝑏0.𝐻0 = 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
+ 𝑣.𝐺1 − 𝑎𝑡.𝐺3

where the RHS is public.

5. Prover picks random:

𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
, 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝜌′

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑠′
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, 𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

$← ℤ𝑝

DART Specification 36

and creates:

𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
= 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺𝐴𝑓𝑓 +𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺1+𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺5+𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺6+𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
.𝐻0, ∈ 𝔾𝑝

6. For the new state, create:

𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
= 𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺𝐴𝑓𝑓 + 𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐺1 + 𝜌′
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺5 + 𝑠′

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺6, ∈ 𝔾𝑝

Same blindings for 𝑠𝑘, 𝑏𝑎𝑙1 are used in both old and new state since these values don’t
change.

7. For the correctness of nullifier, prover creates: 𝑇𝑛𝑢𝑙𝑙 = 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔.𝐺5, ∈ 𝔾𝑝

8. For enforcing 𝑏𝑎𝑙1 <= 𝑀𝐴𝑋𝐹 𝐸𝐸𝐵𝐴𝐿𝐴𝑁𝐶𝐸, prover sets up constraints in Bulletproof.
Let 𝐶𝐵𝑃𝑏𝑎𝑙

be the commitment: 𝐶𝐵𝑃𝑏𝑎𝑙
= 𝑏′.𝐻0 + 𝑏𝑎𝑙1.𝐻1, ∈ 𝔾𝑝

9. Prover creates commitment for 𝐶𝐵𝑃𝑏𝑎𝑙
by picking random 𝑟𝐵𝑃𝑏𝑎𝑙

∈ ℤ𝑝: 𝑇𝐵𝑃𝑏𝑎𝑙
=

𝑟𝐵𝑃𝑏𝑎𝑙
.𝐻0 + 𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

.𝐻1, ∈ 𝔾𝑝

10. Prover hashes the following to create challenge 𝑐 as:

𝑐 = 𝐻𝑎𝑠ℎ(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝑎𝑡, 𝑁, 𝑣, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐶𝐵𝑃𝑏𝑎𝑙

, 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤

, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝐵𝑃𝑏𝑎𝑙
)

11. Prover creates responses for 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
= [𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠𝑘.𝑐, 𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+ 𝑏𝑎𝑙1.𝑐, 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌.𝑐, 𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠.𝑐, 𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+ 𝑏0.𝑐]

11. Prover creates responses for 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
= [⊥, ⊥, 𝜌′

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌′.𝑐, 𝑠′
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝑠′.𝑐]

The symbol ⊥ indicates that no response is created for 𝑠𝑘, 𝑏𝑎𝑙1 since responses have been
created for the same witnesses in 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

.

12. Response for nullifier: 𝑅𝑒𝑠𝑝𝑛𝑢𝑙𝑙 = 𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌.𝑐
13. For relation 𝐶𝐵𝑃𝑏𝑎𝑙

, only the response for blinding 𝑏′ needs to be created: 𝑅𝑒𝑠𝑝𝑏′ =
𝑟𝐵𝑃𝑏𝑎𝑙

+ 𝑏′.𝑐
14. The proof is

(𝐶𝐵𝑃𝑏𝑎𝑙
, 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝑃𝑎𝑡ℎ𝑟, 𝑁, 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤

, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝐵𝑃𝑏𝑎𝑙
, 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

, 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
, 𝑅𝑒𝑠𝑝𝑛𝑢𝑙𝑙, 𝑅𝑒𝑠𝑝𝑏′)

6.2.3.1.2 Verifier

1. Verifier hashes the following to create challenge 𝑐 as:

𝑐 = 𝐻𝑎𝑠ℎ(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤, 𝑎𝑡, 𝑁, 𝑣, 𝑃𝑎𝑡ℎ𝑟, 𝑅𝑜𝑜𝑡, 𝐶𝐵𝑃𝑏𝑎𝑙

, 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
, 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤

, 𝑇𝑛𝑢𝑙𝑙, 𝑇𝐵𝑃𝑏𝑎𝑙
)

2. Verifier enforces the Bulletproof constraint for the balance range: 𝑏𝑎𝑙1 <= 𝑀𝐴𝑋𝐹 𝐸𝐸𝐵𝐴𝐿𝐴𝑁𝐶𝐸.
(Constraints in the appendix)

3. Verifier enforces the Bulletproof constraints for curve tree membership to verify that 𝑃𝑎𝑡ℎ𝑟
leads to 𝑅𝑜𝑜𝑡. (Constraints in the appendix)

4. Verifies correctness of 𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
by checking:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[0].𝐺𝐴𝑓𝑓+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[1].𝐺1+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[3].𝐺5+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[4].𝐺6+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[5].𝐻0

?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
+(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

+𝑣.𝐺1−𝑎𝑡.𝐺3).𝑐

DART Specification 37

⟹ (𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠𝑘.𝑐).𝐺𝐴𝑓𝑓+(𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝑏𝑎𝑙1.𝑐).𝐺1+(𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝜌.𝑐).𝐺5+(𝑠𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠.𝑐).𝐺6+(𝑏0𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+𝑏0.𝑐).𝐻0
?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

+(𝑆𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
+𝑣.𝐺1−𝑎𝑡.𝐺3).𝑐

5. Verifies correctness of 𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤 by checking:

𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[0].𝐺𝐴𝑓𝑓+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[1].𝐺1+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
[3].𝐺5+𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤

[4].𝐺6
?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤

+(𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤−𝑎𝑡.𝐺3).𝑐

⟹ (𝑠𝑘𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠𝑘.𝑐).𝐺𝐴𝑓𝑓+(𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔
+𝑏𝑎𝑙1.𝑐).𝐺1+(𝜌′

𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝜌′.𝑐).𝐺5+(𝑠′
𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔+𝑠′.𝑐).𝐺6

?= 𝑇𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤
+(𝑆𝑡𝑎𝑡𝑒𝑛𝑒𝑤−𝑎𝑡.𝐺3).𝑐

Note that for the 𝑠𝑘, 𝑏𝑎𝑙1 components, verifier reuses responses from 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
as indicated

by ⊥ in 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤
. 6. Verifies correctness of nullifier by checking: 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟

[3].𝐺5
?=

𝑇𝑛𝑢𝑙𝑙 + 𝑁.𝑐 ⟹ (𝜌𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 + 𝜌.𝑐).𝐺5
?= 𝑇𝑛𝑢𝑙𝑙 + 𝑁.𝑐 7. Verifier checks response for 𝐶𝐵𝑃𝑏𝑎𝑙

as: 𝑅𝑒𝑠𝑝𝑏′ .𝐻0 + 𝑅𝑒𝑠𝑝𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑𝑟
[1].𝐻1

?= 𝑇𝐵𝑃𝑏𝑎𝑙
+ 𝐶𝐵𝑃𝑏𝑎𝑙

.𝑐 ⟹ (𝑟𝐵𝑃𝑏𝑎𝑙
+ 𝑏′.𝑐).𝐻0 + (𝑏𝑎𝑙1𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔

+
𝑏𝑎𝑙1.𝑐).𝐻1

?= 𝑇𝐵𝑃𝑏𝑎𝑙
+𝐶𝐵𝑃𝑏𝑎𝑙

.𝑐 8. Verifier finally checks the Bulletproofs proof for all constraints
i.e. curve tree membership and balance range

DART Specification 38

7 Appendix
7.1 Appendix
7.1.1 Constraints for refreshing 𝜌 and 𝑠
Once 𝜌, 𝜌𝑖, 𝜌𝑖+1, 𝑠𝑖, 𝑠𝑖+1 are committed in Bulletproof, we get circuit variables for each one of
them. Then we enforce multiplication relations among these variables.

These variables are guaranteed to have these values
var_rho = \rho
var_rho_i = \rho_i
var_rho_i_plus_1 = \rho_{i+1}
var_s_i = s_i
var_s_i_plus_1 = s_{i+1}

// Assign circuit variable var_rho_i_plus_1_ to the product of var_rho and var_rho_i
var_rho_i_plus_1_ <- var_rho * var_rho_i

// Assign circuit variable var_s_i_plus_1_ to the product of var_s_i and var_s_i
var_s_i_plus_1_ <- var_s_i * var_s_i

// Enforce that values of var_rho_i_plus_1 and var_s_i_plus_1_ are same
var_rho_i_plus_1 == var_s_i_plus_1_

// Enforce that values of var_s_i_plus_1 and var_s_i_plus_1_ are same
var_s_i_plus_1 == var_s_i_plus_1_

7.1.2 Constraints for range proof

To prove that a value 𝑣 is of 𝑛 bits, i.e. 𝑣 ∈ [0, 2𝑛 −1), decompose 𝑣 into bits and prove that each
bit is indeed a bit, i.e. 0 or 1 and the appopriate linear combination of the bits is the original
value 𝑣.

// bits is an array bits of v in little-endian representation.
bits = decompose(v)
// This will be set to different powers of 2 during execution of the loop
m = 1
for bit in bits {

// Allocate circuit varaibles a and b and assign them values 1-bit and bit
a <- 1 - bit
b <- bit

// Enforce a * b = 0, so one of (a,b) is zero
a * b == 0

// Enforce that a = 1 - b, so they both are 1 or 0.
a + (b - 1) == 0

// Add `-bit*2^i` to the linear combination
v = v - bit * m;

m = m * 2
}

DART Specification 39

// Enforce v = 0
v == 0

	P-DART Math Documentation
	Table of Contents

	Notation, Prerequisites and System Model
	Notation
	Prerequisites
	Sigma protocol
	Chaum-Pedersen Proof of Equality for Shared Witnesses
	Elgamal and its variations
	Curve Trees
	Bulletproofs

	System model
	Assets
	Accounts and Settlements
	Accumualtors
	Asset-account mapping

	Key registration

	Account Registration
	Account registration
	Protocol

	Asset Minting
	Asset minting
	Protocol

	Settlement
	Settlement
	Leg
	Leg creation proof

	Sender/Receiver Affirmations
	Affirmations
	Protocol

	Fee
	Account registration
	Account top-up
	Fee payment

	Appendix
	Appendix
	Constraints for refreshing \rho and s
	Constraints for range proof

